
Skel: A Streaming Process-based Skeleton
Library for Erlang

Archibald Elliott1 Christopher Brown1 Marco Danelutto2

Kevin Hammond1

Email: ashe@st-andrews.ac.uk

1

School of Computer Science, University of St Andrews, Scotland, UK.

2

Dept. Computer Science, University of Pisa, Pisa, Italy.

IFL 2012 - Oxford



This Talk

I Why we need Parallelism

I Skeletons are good Abstractions

I Skeletons in Erlang

I skel’s good Speedups



The Vision

1. The single-core processor is almost completely obsolete

2. Hardware systems are rapidly moving towards many- and
mega-core

By 2019 there will be millions of cores in home

desktop machines – Joe Armstrong

3. Software systems are still not ready:
I Programming languages have not caught up
I Software practices have not caught up
I Programmers have not caught up

4. We need to make programming parallel systems easy



Race Conditions

What happens when you use Pthreads



Current Approaches

I Most Programmers are taught to program sequentially

I Modifying sequential code will not scale

I Typical concurrency techniques will not scale
I Fundamentally, current approaches are too low-level:

I You can’t program e↵ectively while thinking about deadlocks,
race conditions, synchronisation, non-determinism etc.

I You can’t program e↵ectively directly with threads, message
passing, mutexes or shared memory.

I You can only program e↵ectively with a di↵erent mindset



Our Approach

I We need to provide a set of abstractions for the programmer;

I They need to become second-nature;

I They need to make it easy to introduce parallelism;

I They need to make it easy to tune parallelism to gain
maximum speedup;



Functional Programming

Functional programming can provide the correct abstractions

However, languages take fundamentally di↵erent approaches

I Haskell (GpH) is too implicit:
I par :: a -> b -> b
I pseq :: a -> b -> b

I Erlang is too explicit:
I spawn
I ! and receive



Our Approach

Parallel Pattern
A reusable way of parallelising a computation.

Algorithmic Skeleton

An implementation of a Parallel Pattern.



API

skel:run(Skeleton , InputItems ).

% -> OutputItems

I Skeleton – a skeleton

I InputItems – items to be processed

I OutputItems – items that have been processed



Seq

{seq, Fun}

Fun

Tn · · · T1 T �
n · · · T �

1

skel:run({seq , fun (X) -> X+1 end},

[1,2,3,4,5,6]).

% -> [2,3,4,5,6,7]



Pipe

Tn · · · T1 T �
n · · · T �

1

{pipe, [Skel1, Skel2, · · · , Skeln]}

Skel1 Skel2 Skeln
· · ·

Inc = {seq , fun (X) -> X+1 end},

Double = {seq , fun (X) -> X*2 end},

skel:run({pipe , [Inc , Double]},

[1,2,3,4,5,6]).

% -> [4,6,8,10,12,14]



Farm

Tn · · · T1 T �
n · · · T �

1

...

Skel2

Skel1

{farm, Skel, M}

SkelM

Inc = {seq , fun(X)-> X+1 end},

skel:run({farm , Inc , 3},

[1,2,3,4,5,6]).

% -> [2,5,3,6,4,7]



Map

Tn · · · T1 T �
n · · · T �

1

{map, Skel, Decomp, Recomp}

...

Skel2

Skelm

Skel1

Decomp Recomp

Inc = {seq , fun(X)-> X+1 end},

skel:run({map , Inc ,

fun erlang:tuple_to_list /1,

fun erlang:list_to_tuple /1},

[{1,2},{3,4}]).

% -> [{2,3},{4,5}]



Reduce

Tn · · · T1

Decomp

{reduce, R, Decomp}

R

R

R

R

R

R

R

T �
n · · · T �

1

skel:run({reduce , fun(X,Y) -> X + Y end ,

fun erlang:tuple_to_list /1},

[{1,2,3,4,5,6},{7,8,9,10,11,12}]).

% -> [21,57]



Feedback

Tn · · · T1 T �
n · · · T �

1

Feedback

{feedback, Skel, Feedback}

Skel

Inc = {seq , fun(X) -> X+1 end},

skel:run({feedback , Inc ,

fun(X) -> X < 5 end},

[1,2,3,4,5,6,7,8,9,10]).

% -> [5,6,7,8,9,10,11,5,5,5]



Experiments

I Regular task cost: 1ms

I Task cost > communication cost

I Constant input number: 100,000

I 8 Cores: 2x Intel Xeon 4-Core X5355 2.66GHz

I Erlang R15B01



Results: Pipe

2 4 6 8

2

4

6

8

Number of Cores

S
p
ee
du

p

Linear
1 Stage
2 Stages
4 Stages
8 Stages
16 Stages



Results: Farm

2 4 6 8

2

4

6

8

Number of Cores

S
p
ee
du

p

Linear
1 Worker
2 Workers
4 Workers
8 Workers
16 Workers



Results: Map

2 4 6 8

2

4

6

8

Number of Cores

S
p
ee
du

p

Linear
1 Worker
2 Workers
4 Workers
8 Workers
16 Workers



Results: Reduce

2 4 6 8

0

2

4

6

8

Number of Cores

S
p
ee
du

p

Linear
1 Item
2 Items
4 Items
8 Items
16 Items



Conclusions

I Adopting a Parallel Mindset
I Functional Programming
I Algorithmic Skeletons

I Erlang is a great fit.
I Low-level enough for control
I High-level enough to allow abstraction

I skel’s speedups prove our implementation is good



Future Work

I More Benchmarks

I Better Speedups
I Higher-order Skeletons

I Divide and Conquer
I MapReduce
I Genetic Algorithms
I . . .
I Domain-specific Algorithms



THANK YOU

http://www.paraphrase-ict.eu

@paraphrase fp7


	Results

