
Fireiron: A Data-Movement-Aware
Scheduling Language for GPUs

Bastian Hagedorn∗
University of Münster
b.hagedorn@wwu.de

Archibald Samuel Elliott∗
lowRISC

sam@lenary.co.uk

Henrik Barthels∗
AICES, RWTH Aachen University
barthels@aices.rwth-aachen.de

Rastislav Bodik∗
University of Washington
bodik@cs.washington.edu

Vinod Grover
NVIDIA

vgrover@nvidia.com

ABSTRACT
High GPU performance can only be achieved if a kernel efficiently
uses the multi-layered compute and memory hierarchies. For ex-
ample, accelerators such as NVIDIA’s Tensor Cores require specific
mappings of threads to data that must be considered in data move-
ments to and from registers. Current compilers struggle to match
the performance of vendor libraries like cuBLAS, which are de-
veloped by experts in assembly. This manual low-level coding is
time-consuming and complicates to unlock the full GPU potential,
preventing experimentation to achieve even higher performance.

In this paper we introduce Fireiron, a scheduling language aimed
at performance experts. Fireiron provides high-level abstractions
for expressing GPU optimizations that are unavailable to compilers
today and which so far must be written in assembly. Our innova-
tion is that both computations and data movements are first class
concepts that can be separately mapped to threads, as required for
the efficient use of specialized hardware like Tensor Cores.

We evaluate Fireiron on three GPU architectures against expert-
written advanced matrix multiplications. First, we show that Fire-
iron schedules are able to express the strategies of these implemen-
tations requiring about 6× less lines of code. Second, we show that
the code generated by Fireiron schedules outperforms the fastest
implementations (provided by cuBLAS) by more than 2×.

CCS CONCEPTS
• Software and its engineering → Compilers; Parallel pro-
gramming languages; Software performance.

KEYWORDS
Data Movement; GPU; Optimization; Compilers; Fireiron

∗The work described in this paper was done while the authors where at NVIDIA

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PACT ’20, October 3–7, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7092-9/20/08. . . $15.00
https://doi.org/10.1145/3410463.3414632

ACM Reference Format:
Bastian Hagedorn, Archibald Samuel Elliott, Henrik Barthels, Rastislav
Bodik, and Vinod Grover. 2020. Fireiron: A Data-Movement-Aware Sched-
uling Language for GPUs. In 2020 International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT ’20), October 3–7, 2020, Virtual
Event, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3410463.3414632

1 INTRODUCTION
Developing high-performance kernels for GPUs is challenging be-
cause of their complex multi-layered compute and memory hier-
archies. Only if a kernel makes optimal use of both hierarchies,
implementations achieve performance close to the theoretical peak.

On modern GPUs, achieving optimal performance essentially
boils down to careful data movements and the precise use of spe-
cialized hardware units such as NVIDIA’s Tensor Cores. Today, there
remains a significant gap between what optimizing compilers can
achieve versus what human experts achieve by hand-tuning im-
plementations using low-level assembly. Figure 1 (a) shows the
performance of the best matrix multiplication implementations we
found for Halide [23] and TVM [7], two state-of-the-art compilers,
compared to the performance achieved by NVIDIA’s experts pro-
viding manually tuned implementations in the high-performance
cuBLAS library. Manually developing high-performance implemen-
tations is time-intensive and error-prone even for experts, and
more crucially, it complicates experimentation and thus hinders
potentially unlocking even higher performance.

Figure 1: (a) Comparing Halide’s [11] and TVM’s [28] matrix
multiplication performance against cuBLAS (higher is bet-
ter) reveals a significant remaining gap. Fireiron allows GPU
experts to specify implementations that even outperform
hand-tuned cuBLAS library code. (b) The Fireiron-generated
CUDA code achieving this performance containsmostly data
movement optimizations which motivates a scheduling lan-
guage where data movements are first-class constructs.

https://doi.org/10.1145/3410463.3414632
https://doi.org/10.1145/3410463.3414632
https://doi.org/10.1145/3410463.3414632

Schedule-based compilation [7, 23], which gained popularity
with the introduction of Halide, is a huge step towards provid-
ing experts with a powerful tool for developing high-performance
programs. However, the current approaches prevent experts from
closing the remaining performance gap because they treat data
movements as second-class citizens: In order to unlock the highest
performance, it is crucial to define precise mappings of both, com-
putations to parallel compute units but also how data movements
are coordinated through the memory hierarchy.

In this paper, we propose Fireiron, a scheduling language, IR, and
compiler for performance experts. With Fireiron, programmers can
define where computation and data movement take place. This is
required to unlock the potential of specialized hardware such as
Tensor Cores. In this paper, we make the following contributions:

(1) We introduce a compiler IR in which both computations and
data movements are first-class citizens, meaning that they can
be scheduled with the same primitives.

(2) Fireiron’s scheduling language provides high-level abstractions
for progressively decomposing computations and data move-
ments until they match assembly instructions, accelerator prim-
itives, or predefined microkernels. This is achieved by repre-
senting each using precise specifications.

(3) We show that Fireiron schedules are able to express optimiza-
tion strategies used in handwritten kernels while requiring
6× less code. With Fireiron, experts are able to develop high-
performance GPU kernels computing matrix multiplications
—as of today the best understood and most heavily optimized
GPU computation—that even outperform cuBLAS hand-tuned
library implementations by more than 2× as shown in Figure 1.

2 ACHIEVING HIGH GPU PERFORMANCE
Efficiently using the GPU’s compute and memory hierarchy re-
quires the coordinated application of multiple optimizations. When
optimizing data movements for example, depending on which in-
structions are used, the ownership (that is the specific mapping
of threads to data) is fixed which complicates achieving efficient
memory access patterns. To alleviate this, data movements can be
decomposed into two steps, allowing threads to exchange data in
between, for achieving more efficient reads and writes. With the
introduction of Tensor Cores, providing 12× more throughput than
regular FMA instructions, data movements become even more chal-
lenging because their mma.sync instructions [18] impose complex
ownerships involving groups of eight threads called Quad-Pairs.

Consider the epilog of a matrix multiplication kernel as an (often
neglected) example which however is crucial to optimize because
it is completely memory bandwidth limited. After performing the
computation, in the epilog each thread-block must move the com-
puted results of its tile back to global memory. Typically, these
results are distributed across the registers of its threads. Figure 2
(left) shows a simple epilog in which every thread directly copies its
computed results to global memory, and CUDA code implementing
this data movement. This implementation is not very efficient due
to uncoalesced writes to global memory, i.e., C needs to be accessed
by writing rows instead of 8 × 8 tiles.

Figure 2 (middle) shows an optimized epilog and here, we addi-
tionally assume that the results were computed using Tensor Cores.

Naive Algorithm
k = te.reduce_axis ((0, K), 'k')
A = te.placeholder ((M, K), name='A')
B = te.placeholder ((K, N), name='B')
C = te.compute ((M, N),
lambda x,y: te.sum(A[x,k]*B[k,y], axis=k),name='C')

Optimized Algorithm
packedB = te.compute(
(N/bn,K,bn),lambda x,y,z:B[y,x*bn+z],name='packedB ')

C_opt = te.compute ((M, N),
lambda x, y: te.sum(A[x, k] *
packedB[y // bn, k, tvm.tir.indexmod(y, bn)],
axis=k), name = 'C_opt ')

Listing 1: Performing storage layout transformations in
TVM requires to modify the algorithm instead of the
schedule.

When Tensor Cores are used, at runtime a warp is partitioned into
four so-called Quad-Pairs, groups of eight specific threads, which
cooperatively execute an mma.sync instruction to compute an 8×8
tile of the output. Tensor Cores are programmable using a family
of mma.sync variants for different operand storage layouts (row- or
column-major) and accumulation precision (FP16 or FP32). Each
variant prescribes a different quad-pair-level ownership. In this
version, the quad-pairs, and thus their threads, computed logically
distributed tiles that are physically stored in contiguous registers.
In order to achieve coalesced writes to global memory, threads
have to exchange data in shared memory first to be able to store
results which they themselves have not computed. Every block
allocates a temporary buffer in shared memory for the coordinated
data exchange (indicated by the different write and read patterns).
The second step of this optimized epilog (SHtoGL) is rather standard:
All threads of a warp move a complete row from shared- to global
memory achieving coalesced and vectorized writes. The first step
(RFtoSH), is more complicated due to the dictated Tensor Core own-
ership. Instead of simply materializing the ownership in shared
memory in the first step, the data movement to and from shared
memory can be further optimized: Padding the shared memory
buffer with additional columns achieves a skewed read and write
access pattern reducing the number of read and write bank conflicts.

Implementing the optimized epilog requires about 7×more lines
of code and is significantly more complex than the simple version.
In the next section, we explain how to express both versions in a
concise and precise way using Fireiron as shown in Figure 2 (right).

Limitations of Today’s Schedule-Based Approaches. In schedule-
based compilers like TVM and Halide, data movements are treated
as second-class citizens and expressing optimizations for them is a
stretch and blurs the line between algorithms and schedules. For ex-
ample, expressing optimizations like storage layout transformations
require drastic changes to the algorithm instead of being express-
ible as a schedule. Listing 1 shows a naive matrix multiplication
algorithm in TVM [27]. Because existing scheduling languages can
only decompose computations, a modified and optimized algorithm
in which a new function packedB must be introduced to permute
elements in memory. Additionally, the existing languages allow to
allocate temporary buffers in specific locations (e.g., using Halide’s

Figure 2: Two options for implementing the epilog of a matrix multiplication. Option 1 (top): Directly copy the results from
register file (CRF) to globalmemory (C). Option 2 (bottom): Synchronize via sharedmemory. This allows vectorized and coalesced
stores to global memory while avoiding bank conflicts using padding in shared memory.

store_in primitive) and by introducing identity computations as re-
dundant compute stages, data movements are implicitly scheduled
by scheduling the computation of the producer and consumer stage.
The compiler then needs to infer the implications for the associated
reads and writes of this data movement during code generation.
However, inferring the coordination required for expressing ad-
vanced data movements such as the epilog shown in Figure 2 is
beyond the reach of automatic compiler analysis.

Additionally, using Tensor Cores efficiently is challenging: A
warp executes four mma.sync instructions simultaneously, each col-
lectively executed with eight specific threads (a quad-pair) oper-
ating on the same 8 × 8 tile. NVIDIA provides a CUDA interface
(WMMA [17]) which exposes a conceptually single, warp-wide
macro-mma using a fixed data-to-quad-pair mapping that is optimal
in some cases but not all. Some situations requiremore sophisticated
mappings such as the one shown Figure 2b where a quad-pair, and
thus its threads, operate on interleaved distributed tiles. In Fireiron
one can a) flexibly decompose warp-level computations to quad-
pairs and b) implement the required data movements by treating
moves as schedulable operations. Existing scheduling languages
lack these mechanism and currently only target WMMA which
potentially explains the remaining gap in performance shown in
Figure 1.

3 RETHINKING SCHEDULING LANGUAGES
In this section, we introduce Fireiron’s core concepts:

(1) Specifications for describing the task performed within a certain
region of code in a GPU kernel, and

(2) Decompositions which form our scheduling language and de-
scribe how to implement a given specification.

The key idea behind Fireiron is that implementation strategies are
described by a schedule, i.e., a sequence of decompositions that grad-
ually decompose the given spec into a partial implementation and
one or more nested sub-specifications. Applying a schedule to an
initial specification describing the kernel-computation creates our
IR of nested specifications which naturally reflects the hierarchical
structure present in high-performance GPU implementations.

In Figure 3, we show this structure and the role of data move-
ments using a simple matrix multiplication kernel as an example.
Conceptually, the computation is hierarchically decomposed into (i)
sub-computations of the same kind and (ii) data movements. Here,
for example, the outermost computation is decomposed into matrix
multiplications operating on smaller shapes (blue boxes), until even-
tually every thread computes a single FMA instruction in registers
(innermost blue box) that can be viewed as a matrix multiplication
of matrices containing only a single element. In between, data is
moved to lower levels of the memory hierarchy (purple boxes), and

Figure 3: Showing the hierarchical structure of GPU kernels using a matrix multiplication as example. Within a typical GPU
kernel, we gradually descend the compute andmemory hierarchy while computing smaller instances of the original problem.

for brevity, no data movement implementations are shown, i.e.,
no purple box contains nested boxes. However, every data move-
ment is similarly decomposed as indicated on the bottom where
the epilog of this kernel (the last purple box) might be implemented
analogously to the data movements explained in Figure 2.

Figure 4 shows how the code in Figure 3 is expressed using
Fireiron’s scheduling language. The corresponding IR is created by
progressively decomposing the nested specifications according to
the schedule. For brevity, we omit the partial implementations (as
shown later in Figure 6), and only show the nesting of specifications.
Here, we show the decomposition of the epilog by applying the
simpleEpilog visualized in Figure 2. For brevity, we again omit
the details for the remaining data movements and instead indicate
their decomposition (using .apply(schedule)).

Currently, Fireiron is implemented as a domain-specific language
embedded in Scala and generates CUDA kernels with inline PTX
assembly. The rest of this section describes Fireiron’s Specifications
and Decompositions in more detail.

3.1 Specifications
Note that each box in Figure 3 can be labeled with a precise descrip-
tion of the task performed inside it. We call this the Specification
(spec). Its implementation is observed by looking inside the box
where the task is further decomposed. In Fireiron, a specification is
a data-structure describing the current task to implement. A spec
contains enough information such that a programmer would be
able to manually provide an implementation. This especially en-
tails that it contains the shapes, locations and storage layouts of its
input and output operands, including the responsible level of the
compute hierarchy performing this operation. Currently, Fireiron
supports two main classes of specs: matrix multiplication (MatMul),
and data movement (Move). Move specs explicitly and exclusively
introduce data movements and allow Fireiron to express precise
implementation strategies for them. Figure 5 (top) shows a kernel-
level MatMul spec and a Move spec describing the movement of a
matrix src from global to shared memory during which the storage
layout is transformed from column- to row-major.

Figure 4: Describing and representing the implementation
shown in Figure 3 using Fireiron’s decompositions con-
structing the IR of nested specifications. (Executable speci-
fications are annotated with a star)

Figure 5: Examples of Fireiron specs: A kernel-level matrix
multiplication computation and a specification for a data
movement from global to shared memory. An executable
spec directly corresponds to an instruction like __hfma in
CUDA or ld.global.nc.v4.b32 in PTX.

Formatrices, Fireiron supports both constant and symbolic shapes
shapes written as arithmetic expressions, e.g., M=((x+y)%z) where
𝑥 ,𝑦 and 𝑧 are only known at compile-time. For brevity in figures, we
sometimes omit information and, for example, write MatMul(M,N,K)
(GL,GL,GL)(Kernel) and Move(src:128x8)(GL->SH)(Block) for
the two upper specs shown in Figure 5.

Inspired by Chapel [5], Fireiron also provides the illusion of
block-wide matrices residing in the thread’s registers. This dis-
tributed array abstraction allows Fireiron users to think of this
matrix as a contiguous block-wide matrix whereas actually every
thread contains only a small tile in its registers. During code gen-
eration, we naturally lower this abstraction to low-level CUDA
or inline PTX code which does not provide this abstraction, as
described in the next section.

Executable Specifications. A specification is called executable
when it describes the semantics of a built-in instruction or library
implementation. Fireiron, provides a predefined set of executable
specs matching different CUDA and PTX instructions. Figure 5 (bot-
tom) shows examples for executable MatMul and Move specs and
their associated code snippets. The idea is to gradually decompose
specifications until only executable specs remain for which we
know how to generate code.

3.2 Decompositions
A Decomposition describes how to implement a spec. For example,
we might decide to implement a matrix multiplication in a tiled fash-
ion which effectively decomposes the initial computation into tiles
of smaller matrix multiplications and a loop-nest describing how
to iterate over these tiles. The smaller matrix multiplication tiles
are then further decomposed by the subsequent decompositions in
a given Fireiron schedule. Fireiron provides four decompositions
for describing the implementation strategies of both computations
(MatMul) and data movements (Move).

The .tile Decomposition. Figure 6a shows the application of the
tile decomposition to a MatMul spec. Generally, spec.tile(r,c)
partitions the output into 𝑟 × 𝑐 shaped tiles. The input matrices
are tiled accordingly, i.e., tiling a MatMul spec partitions the A
matrix into row-tiles and B into column-tiles. Tiles can also be
non-contiguous as shown in Figure 2 in which case .tile expects
a width and offset for both dimensions. The tile decomposition
allows to assign tasks to a level of the compute hierarchy: We can
refine the tiling using .to(level) which changes the responsible
compute hierarchy level for the resulting tiled spec. tile is also
applicable to a Move spec in which case the input (src) and output
(dst) matrices are tiled in the same way. In our current implemen-
tation, the input sizes must be evenly divisible by the tile sizes. This
limitation could be resolved with using predicated PTX instructions
for dealing the partial tiles at the boundaries.

The .move Decomposition. Applying .move explicitly introduces
data movements for moving the operand of a given spec to a new
location in the memory hierarchy. Figure 6b shows the application
of the move decomposition to a MatMul spec. Here, we move the A

operand from global to shared memory. The move decomposition
expects three arguments: the matrix to move, a destination in the

(a) Tiling a MatMul spec results in a decomposed subspec with ad-
justed dimensions and optionally adjusted compute hierarchy to
indicate parallel execution.

(b) Applying move to a MatMul spec results in a new spec in which the
memory location of the specified operand has changed. A Move spec
is created representing the data movement which is implemented
as specified in the strategy impl.

(c) The split decomposition allows to create tiles in the K-
dimension of the input operands of a MatMul spec.

(d) The accumulateIn decomposition allows to accumulate the re-
sults of a matrix multiplication in lower levels of the memory hier-
archy and to specify the datamovement of the results back to global
memory.

Figure 6: Visualization of Fireiron’s Decompositions.

memory hierarchy and a schedule impl describing how to imple-
ment the movement. Applying move always creates two new nested
specs: First, a Move representing the data movement to the new
location whose implementation is described in the impl schedule.
Second, an updated version of the input spec where the location
of the moved operand has changed. The move decomposition can
also be applied to a Move spec which allows us to specify data
movements via an indirection as described and shown in Figure 2.

The .splitDecomposition. The tile decomposition creates tiles
in the 𝑀 and 𝑁 dimension of the MatMul operands, but we also
need to be able to create tiles in the 𝐾-dimension. Figure 6c shows
the application of the split decomposition which enables this.

The .accumulateIn Decomposition. Finally, we need to be able
to specify that results shall be accumulated in lower levels of the
memory hierarchy, typically in registers, and their movement back

to global memory in the epilog of a matrix multiplication kernel.
Figure 6d shows the application of the accumulateIn decompo-
sition which expects three arguments: The location of the accu-
mulation buffer, a schedule init describing its initialization, and a
schedule impl specifying how to move the computed results back
to global memory. Similar to move, accumulateIn creates multiple
sub-specs. First, an Init spec (a variant of Move without source
operand) representing the initialization of the buffer. Its implemen-
tation is described in the init schedule. Second, the new MatMul
spec with an updated location of the C matrix. Third, the Move
representing the movement of the results to global memory.

At any time in a schedule, one can also provide a micro-kernel
implementing the current spec. This allows to use a custom im-
plementation for a specific region of the kernel whose behavior
is described by a spec but for which our decompositions do not
provide suitable abstractions.

3.3 Advanced Optimization using Refinements
Fireiron provides a set of refinements, i.e., optional modifications
for decompositions, exposing more fine-grained control required
to achieve high performance.

By default, tile creates tiles that will be computed sequentially
using nested for-loops. The to refinement allows to compute tiles
in parallel instead. Internally, Fireiron uses one-dimensional com-
pute hierarchy indices that are mapped in a row-major order to the
two dimensional tile arrangement. The layout refinement allows to
change this order to column-major and swizzle enables even more
complex mappings by first permuting the one-dimensional indices
arbitrarily before assigning them to the tiles. Using unroll emits
#pragma unroll above the loops.

The move decomposition can be refined as well. Using pad(n)
modifies the memory allocation (discussed in the next section) for
the destination buffer associated with the created Move spec and
allocates 𝑛 additional columns to avoid memory bank conflicts.
prefetch generates double-buffered, prefetched versions of the data
movement. We emit __syncthreads() if the destination location
is shared memory. This can be suppressed using noSync in situa-
tions in which no explicit synchronization is necessary. Finally,
storageLayout allows to specify a row- or column-major storage
layout for the destination buffer.

Similar to tile, the split decomposition can also be refined us-
ing unroll, to unroll the generated loop. Using the sync refinement
emits __syncthreads(); as the last statement in the body of the
created for-loop. This may be required depending on how shared
memory is used in a strategy.

We are aware that some refinements, especially noSync and sync,
allow the specification of incorrect implementation strategies that
might lead to race conditions. However, a decomposition without
refinements always generates correct code. So far, this has caused
no problems as Fireiron is meant to be used by performance experts.
We intend to improve the analyses of strategies to ensure these
refinements cannot cause correctness issues in the future.

4 CODE GENERATION AND OPTIMIZATION
Fireiron’s IR of nested specs naturally reflects how GPU kernels are
structured. Therefore, code generation almost boils down to pretty
printing the IR, traversing it from top to bottom.

As mentioned in the previous section, applying a decomposition
to a spec describes how to implement it by creating one or more
specs, and by emitting code to implement the decomposition. For
example, using tile generally emits two for-loops that sequentially
iterate over the created tiles (e.g, Figure 3, lines 31-32). If tiles are
assigned to the compute hierarchy using .to, instead of emitting
sequential loops, the tiles are computed in parallel using the unique
compute hierarchy indices for accessing the matrices. Figure 2
(right-top) shows a Fireiron example using both sequential and
parallel tiles and the corresponding CUDA code we generate is
shown at the bottom left.

Using the split decomposition emits one loop iterating over
the tiles in the K-dimension. The accumulateIn and move decom-
position emit no code themselves (except for synchronization if
the destination is shared memory). Instead, the created sub-specs
will be further compiled to CUDA code. The done operator is called

on an executable spec to trigger code generation where we inject
the associated code snippet. Optionally, done accepts a String: a
micro-kernel we inline during code generation that implements the
current spec.

Memory Allocation. In order to allocate enough memory, we
traverse the IR once and register all Move specs which specify how
much to allocate where - by definition. Generally, every level of
the compute hierarchy is associated with a level of the memory
hierarchy (Kernel→GL, Block/Warp→SH, Thread→RF). There are two
potential cases to consider: Either, the responsible compute hierar-
chy of the Move (or Init) spec matches the associated destination,
or they do not match. The first case is straightforward. For example,
when visiting the spec Move(A:128x8)(GL->SH)(Block), we emit

float __shared__ ASH [128*8];

at the beginning of the kernel.
The second case (i.e., memory allocation for distributed arrays) is

more complicated. Since the responsible compute hierarchy of the
Move or Init spec does not match the associated destination, we
need to continue traversing the decomposition as shown in the ex-
ample. For example, visiting Init(C:128x128)(GL->RF)(Block)
specifies the need to allocate memory in the register file. However,
allocating 128 × 128 elements per thread are far too many because
a single thread only owns a small piece of the whole matrix. In
order to find out howmany elements we need to allocate per thread,
we need to traverse the decomposition until we find the tile size
assigned to threads:

Init(C:128x128)(GL->RF)(Block)
.tile (64 ,32).to(Warp)
.tile(8, 8).to(Thread)//<-allocate 8x8 floats per thread
.tile(1, 1).done

In this case, we emit float CRF[8*8];.

Index Computation. Index expressions for every operand are
computed automatically while decomposing specs. Every operand
has an associated row- and column index that is gradually updated.
Every application of a decomposition returns a new spec in which
we either sliced the operands or moved them to a new memory
location. For example, applying MatMul.tile(rs,cs) generates
two nested sequential for-loops with indices rowTile, and colTile.
The index expressions for the matrices in the resulting tiled MatMul
spec are updated as follows:

C.rowIndex += rowTile * rs;
C.colIndex += colTile * cs;
A.rowIndex += rowTile * rs;
B.colIndex += colTile * cs;

If tiles are computed in parallel, by for example using .to(Block),
we use blockIdx.x and blockIdx.y instead of rowTile and colTile.
Similarly to memory allocation for distributed arrays, we have to
compare the current compute hierarchy with the memory location
of the array to update: In the following example

MatMul(128,128,8)(GL,GL,RF)(Block).tile (64 ,32).to(Warp)

we do update the A and B index expressions but not the index ex-
pressions for C. This is because C resides in registers and accessing

Figure 7: Supporting the CUDA WMMA API in Fireiron by
adding new warp-level executable specifications.

1 val simpleWMMA = MatMul(M,N,K)(GL,GL,GL)(Kernel)
2 .tile (64 ,64).to(Block)
3 .accumulateIn(FR, // accumulate in warp -level fragments
4 Move.tile (16 ,16).to(Warp).done , // init strategy
5 Move.tile (16 ,16).to(Warp).done) // store strategy
6 .split (16)
7 .tile (16 ,16).to(Warp)
8 .move(MatMul.A, FR , Move.done) // 16x16 A tiles to FR
9 .move(MatMul.B, FR , Move.done) // 16x16 B tiles to FR
10 .done // => residual: MatMul (16 ,16 ,16)(FR,FR,FR)(Warp)

Listing 2: Simple Fireiron WMMA decomposition describing
the implementation of the first cudaTensorCoreGemm kernel
shown in the CUDA samples [15].

it using the warp indices would be incorrect. Instead, we only start
updating the index expression for C as soon as we pass the Thread-
level. The CUDA code in Figure 2 shows exactly this effect where C
(residing in global memory) is accessed using all compute hierarchy
indices whereas CRF (residing in registers) is only accessed using
the indices used below the Thread-level. The split decomposition
updates the indices as expected and every time we allocate a matrix
in a new memory location (using move or accumulateIn), we start
with fresh index expressions in the nested specs.

In order to support Tensor Cores, we simply extended the set of
executable specs and target them using decompositions.

4.1 Supporting WMMA in CUDA
The WMMA-API in CUDA introduces warp-wide matrix multiply
primitives operating on register collections called fragments. For
generating kernels using WMMA primitives, we extend Fireiron in
two ways: First, we extend the memory hierarchy and add a new
level Fragment<M,N,K> (labeled FR if𝑀 = 𝑁 = 𝐾 = 16) in between
shared memory and registers. Fragments are parameterized because
in the CUDA API, sizes are part of the fragment type.

Second, we define new executable specs corresponding to the
CUDA API calls. Figure 7 shows examples of new executable WMMA
specs. Listing 2 shows how these additions allow to write a strategy
targeting the new executable WMMA specs. It computes the matrix
multiplication as follows: 1) assign 64 × 64 elements to a block
(line 2); 2) initialize 16 (4 × 4) accumulator fragments (line 4); 3) fill
operand fragments (lines 8–9); 4) compute the result (line 10); and
5) store results from fragments to global memory (line 5). Note that
we only need to decompose specs to level of warps because of the
new warp-level executable specs.

Figure 8: Supporting mma.sync in Fireiron by decomposing
MatMul to the new QuadPair-level executable spec.

4.2 Supporting mma.sync in PTX
Using the mma.sync PTX instruction [18] allows even more fine-
grained control over how Tensor Cores are used. First, we define
the different mma.sync variants as executable QuadPair-level specs
as shown at the bottom of Figure 8. We can then flexibly target
the new executable specs in multiple ways. Figure 8 shows one
possible decomposition of a contiguous Warp-level MatMul-spec to
four strided executable QuadPair-level specs (indicated by different
colors). Here, every thread of a QuadPair stores four elements from
each input operand and, after collectively executing the mma.sync
instruction, contains eight elements of the C matrix in its registers.
We use the layout refinement for .tile, which we explain shortly,
to assign tiles to quad-pairs in a column-major order.

As the two Tensor Core examples show, supporting new instruc-
tions in Fireiron requires only small changes and allows to target
complex low-level PTX instructions using simple high-level abstrac-
tions. With the introduction of new instructions, e.g., the Turing
and Ampere architectures contain even wider mma instructions, new
executable specs can simply be added.

Reference Description

maxwell Manually-tuned CUDAkernel written byNVIDIA’s perfor-
mance experts targeting the Maxwell architecture (with-
out Tensor Cores)

wmma Publicly available CUDA sample [15] targeting the
WMMA Tensor Core API

cuBLAS NVIDIA’s high-performance math library (using
cublasGemmEx with CUBLAS_GEMM_DEFAULT_TENSOR_OP
to enable Tensor Cores on Volta and Turing)

Table 1: Reference implementations used in the evaluation

5 EVALUATION
In this section, we seek answers to the following questions: If data
movements are as important as we think, how much data move-
ment code is present in high-performance GPU kernels? Are we
able to express the optimizations experts apply as strategies using
Fireiron’s decompositions? Does the code we generate perform as
well as the manually written implementations? And finally, can
Fireiron be used to improve the performance of state-of-the-art
implementations?

References and GPU architectures. Table 1 shows the reference
implementations used in this evaluation. We choose these because
they apply different optimizations targeting specific GPU architec-
tures. We used three GPUs: GeForce GTX 750 Ti (Maxwell), Quadro
GV100 (Volta) and GeForce RTX 2080 Ti (Turing) because they cover
different architectures that need to be optimized differently.

Methodology. We used CUDA-10.0, Driver Version 425.00 and
compiled kernels using -O3 –use_fast_math -arch= sm_XXwhere
XX = 52, 70, and 75 for Maxwell, Volta, and Turing respectively. We
locked the clocks to fixed frequencies, report the minimum kernel
runtime of 1000 runs using nvprof and omit the time required for
data transfers because we are only interested in the quality of our
generated kernel code.

The performance reported in Figure 1 was measured using public
Halide [11] and TVM [28] code, their best matrix multiplication
versions we are aware of. At the time of measuring, the hardware
used for the other experiments was not available to the authors
anymore. Instead we used a Titan XP (Pascal, latest architecture
without Tensor Cores) for Halide and a GeForce RTX 2080 (Turing)
for TVM because they target Tensor Cores. The TVM code was
tuned according to the instructions and we report the best found
performance.

Hypothesis A: Code related to data movements makes up a sig-
nificant fraction in high-performance kernels.

If this is true, we argue that scheduling languages should treat
data movements as first-class concepts. We find that about 2/3 of a
kernel is devoted to optimize data movements.

We count and label the lines of our reference implementations
as either related to data movements or to computations. Since
there is not always a clear purpose associated with a single line
of code, we made a conservative distinction and only count lines
for data movements that are: a) declarations of temporary buffers,

Reference Fireiron Fireiron
Code Schedule Generated Code

maxwell 72 (68.1%) 44 (81.8%) 94 (67.0%)
wmma 122 (41.0%) 26 (76.9%) 113 (65.4%)
cuBLAS closed source 49 (83.7%) 260 (60.4%) (small)
cuBLAS 46 (84.8%) 309 (72.2%) (large)

Table 2: Lines of Code and data-movement related lines (in
%) for references, Fireiron strategies and generated code. For
comparing with cuBLAS, we use two different strategies.

b) __syncthreads(), c) swizzling index computations solely used
for avoiding bank conflicts, and finally, loops that only copy data
in their bodies. Everything else counts as ’computation’ lines.

Table 2 shows our results. Because cuBLAS is closed source, we
additionally analyzed the TVM generated code (Figure 1), which
contains 49 LoC with a data-movement fraction of 77.6%. We also
analyzed the corresponding Fireiron strategies and generated code
to show how our generated code relates to code written by experts.
For comparing against cuBLAS, we developed two different sched-
ules, one more suitable for smaller and one for larger input matrices,
as explained in more detail in Hypothesis C.

We are aware of our inconclusive small sample size. However,
these numbers already show that data movements optimizations
cannot be neglected as they currently are in existing scheduling
languages. This is further underlined by the performance our data-
movement-heavy kernels achieve (evaluated in Hypothesis C and
D) compared to state-of-the-art implementations.

Hypothesis B: Fireiron can express optimizations that are applied
by experts in manually-tuned code.

We find that this is mostly true and that limitations of our sched-
uling language can be circumvented by inlining micro-kernels for
sub-specifications.

Figure 2 showed how Fireiron allows to describe complex opti-
mizations as high-level strategies. The optimized data movement
is used in one of our cuBLAS-strategies. Listing 3 shows two Fire-
iron strategies expressing the maxwell reference (top) and the wmma

reference (bottom). In the maxwell-schedule for example, we use
different strategies for moving A (lines 16–20) and B (lines 22–26)
to shared memory because considering the storage layouts sepa-
rately enables coalesced global memory loads for both operands.
We use swizzling (line 2) [20], and specify which loops to unroll
and where to add or avoid synchronization with refinements. We
also use vectorized loads (lines 34 and 35) and strided tiles (line 30).

However, the maxwell kernel uses a clever trick in its epilog:
It streams data through shared memory in a way that allows to
allocate less memory than we currently do. We cannot yet express
this in Fireiron but the overall epilog is still precisely described by a
Move specification, allowing us to inline a micro-kernel during code
generation instead (line 13). Having specifications describing every
decomposed sub-problem enables a fine-grained reuse of efficient
implementations as inlined micro-kernels during code generation.

1 val swizz: Swizzle = id => // permutation of thread -ids
2 ((id >> 1) & 0x07) | (id & 0x30) | ((id & 0x01) << 3)
3 val storeCUDA: String = //* CUDA Epilog Micro Kernel *//
4 // MATMUL -KERNEL //
5 val maxwellOptimized = MatMul(M,N,K)(GL,GL,GL)(Kernel)
6 ///// BLOCK -LEVEL ///////////////////////////////////////
7 .tile (128 ,128).to(Block).layout(ColMajor)
8 // --- accumulate in RF and use microkernel for epilog --//
9 .accumulateIn(RF, Init
10 .tile (64 ,32).to(Warp)
11 .tile(8, 8).to(Thread) // alloc 64 reg per thread
12 .tile(1, 1).unroll.done ,
13 Move.done(storeCUDA) /* use microkernel (18 LoC) */)
14 .split (8).sync
15 // --- move A to SH ------------------------------------//
16 .move(MatMul.A, SH , Move(A:128x8)(GL->SH)(Block)
17 .tile (128, 1).to(Warp)
18 .tile(64, 1).unroll // copy in two steps
19 .tile(2, 1).to(Thread).layout(ColMajor)
20 .done).storageLayout(ColMajor).noSync
21 // --- move B to SH ------------------------------------//
22 .move(MatMul.B, SH , Move(B:8x128)(GL->SH)(Block)
23 .tile(8, 16).to(Warp)
24 .tile(8, 4).unroll
25 .tile(1, 1).to(Thread).layout(ColMajor)
26 .done).storageLayout(RowMajor).pad (4)
27 ///// WARP -LEVEL //
28 .tile (64 ,32).to(Warp)
29 ///// THREAD -LEVEL //////////////////////////////////////
30 .tile ((4 ,32) ,(4,16)).to(Thread)
31 .layout(ColMajor).swizzle(swizz)
32 .split (1).unroll
33 // move A and B to RF --(omit Move details for brevity) -//
34 .move(MatMul.A, RF , Move.tile (4,1).unroll.done)
35 .move(MatMul.B, RF , Move.tile (1,4).unroll.done)
36 // --- perform computation using FMA -------------------//
37 .tile (1,1).unroll.done// MatMul (1,1,1)(RF,RF,RF)(Thread)

1 val cudaWMMASample = MatMul(M,N,K)(GL,GL,GL)(Kernel)
2 ///// BLOCK -LEVEL ///////////////////////////////////////
3 .tile (128, 128).to(Block)
4 .accumulateIn(FR , Init // init: WMMA -Fragment for C
5 .tile (64 ,32).to(Warp)
6 .tile (16 ,16).unroll.done ,
7 Move(C:128x128)(FR->GL)(Block) // Epilog in 2 steps via SH
8 .move(Move.src , SH , Move // Step 1: FR -> SH
9 .tile (64 ,32).to(Warp)
10 .tile (16 ,16).unroll.done)
11 .tile(16, 128).to(Warp) // Step 2: SH -> GL
12 .tile(1, 128).unroll
13 .tile(1, 4).to(Thread).done)
14 .split (128).sync.unroll
15 // --- move A to SH ------------------------------------//
16 .move(MatMul.A, SH , Move(A:128x128)(GL->SH)(Block)
17 .tile (16 ,128).to(Warp)
18 .tile(2, 128).unroll
19 .tile(1, 8).to(Thread).done).noSync.pad (8)
20 // --- move B to SH ------------------------------------//
21 .move(MatMul.B, SH , Move(B:128x128)(GL->SH)(Block)
22 .tile (128 ,16).to(Warp)
23 .tile (128, 2).unroll
24 .tile(8, 1).to(Thread).layout(ColMajor).done).pad (8)
25 ///// WARP -LEVEL //
26 .tile(64, 32).to(Warp)
27 .split (16).unroll
28 // --- fill WMMA fragments for A and B------------------//
29 .move(MatMul.A, FR , Move.tile(16, 16).unroll.done)
30 .move(MatMul.B, FR , Move.tile(16, 16).unroll.done)
31 // --- perform WMMA computation ------------------------//
32 .tile (16 ,16).done // MatMul (16 ,16 ,16)(FR,FR,FR)(Warp)

Listing 3: Fireiron strategies expressing optimized matrix
multiplication implementations targeting the Maxwell
architecture (top) and using Tensor Cores by targeting
executable WMMA specs (bottom).

Figure 9: Comparing Fireiron generated code against two ref-
erences. We achieve the same performance while requiring
significantly less line of code.

Figure 10: Comparing Fireiron-generated code against
cuBLAS on large input matrices, both use Tensor Cores.

Hypothesis C: Fireiron-generated code achieves performance close
to expert-tuned code.

Figure 9 shows the performance of our generated kernels using
the maxwell schedule (left) and the wmma schedule (right) shown
in Listing 3 compared to the reference kernels executed on multi-
ple architectures. Here, we achieve exactly the same performance
on Volta and Turing and come very close on the Maxwell archi-
tecture compared to the handwritten references while requiring
significantly less lines of code.

cuBLAS provides the best implementations available written in
optimized SASS assembly. It contains multiple differently optimized
implementations and chooses one including tile sizes at runtime
depending on the input sizes and hardware architecture based on
internal heuristics. For a fair comparison, we use two parameterized
strategies (one more suited for smaller, one for larger inputs) allow-
ing to explore tile sizes (powers of two: 24–28), and report the best
performance. Figure 10 shows the speedup compared to cuBLAS
for large inputs. Here, we exactly match the performance in three

Figure 11: Comparing Fireiron-generated against cuBLAS on small input matrices, both use Tensor Cores.

cases and on average, we achieve 93.1% of the cuBLAS performance
with minimum of 88.3% in one case and a maximum of 101% in two
cases. This shows that Fireiron generates code performing close to
the practically achievable peak.

Hypothesis D: Fireiron’s scheduling language is capable of ex-
pressing implementation strategies that generate code which outper-
forms the state-of-the-art.

We were able to define strategies outperforming the manually
optimized cuBLAS code by more than 2×.

Figure 11 shows the performance achieved compared to cuBLAS
using small input sizes. We are able to significantly outperform
cuBLAS on the smallest input sizes because there we use better
tile sizes: We generally found a tile size 16 × 16 in the 𝑀 and 𝑁
dimensions and 64 in the 𝐾 dimension, computed by two warps per
block, to perform best. cuBLAS also chose 64 in the 𝐾 dimension,
but larger sizes for the 𝑀 and 𝑁 dimensions, which reduces the
available parallelism.

Our high-level scheduling language allowed easy experimen-
tation with different tile sizes. Changing tile sizes in a Fireiron
schedule is simple (it requires changing two lines of code) whereas
tile size exploration is a tedious and time-intensive process when
kernels are developed in low-level assembly. There, changing tile
sizes requires the adjustment of multiple complex index expressions
throughout the whole kernel.

6 RELATEDWORK
Fireiron is inspired by Halide [22, 23], TVM [7] and other scheduling
languages [3, 6, 32], but no existing framework treats data move-
ments as a first-class concept or allows to target Tensor Cores using
mma.sync. Fireiron is also inspired by SPIRAL [21] in decomposing
high-level specs using top-down transformations, however both
SPIRAL and Spiral in Scala [19] automatically apply built-in rewrite
rules, rather than giving control to the programmer.

MLIR [4, 14], (using the linalg-dialect), and CUTLASS [13, 16]
achieve high matrix multiplication performance on GPUs by decom-
posing it similar to Fireion. However, CUTLASS provides a fixed set
of hard-coded implementation strategies and neither provides a
high-level scheduling language for experimenting with different
decompositions.

Lift [10, 26], Multi-dimensional Homomorphisms [25], Tensor-
Comprehension [29], and Futhark [12] are also aiming at high-
performance code generation. In contrast to fixed compute specifi-
cations as used in Fireiron, they allow users to specify computations

using a (functional) programming languages. We consider express-
ing computations in a programming language in the future.

Diesel [9], NOVA [8], and PPCG [31] make heavy use of the poly-
hedral model for optimization. Fireiron generates nested affine
loops and might therefore profit using polyhedral techniques too.
Additionally Fireiron strategies are similar to polyhedral schedule
trees [30].

Auto-Tuning approaches including Halide’s auto-tuners [1, 23],
OpenTuner [2], ATF [24], and program synthesis techniques such
as SwizzleInventor [20] aim to automatically develop optimized
code using design space exploration. We aim to automatically syn-
thesize Fireiron strategies in the future but in its current version it
is designed as a tool for human performance experts.

7 CONCLUSION
In this paper we introduced Fireiron, a data-movement-aware sched-
uling language for GPUs. Treating data movements as first class
concepts allows the precise description of high-performance GPU
kernels as Fireiron strategies. We introduced specifications for both
computations and data movements and decompositions to par-
tially implement and map them to the multi-layered compute and
memory hierarchies. Defining low-level PTX assembly as well as
macro-instructions like WMMA as executable specs allows us to
flexibly target specialized hardware like Tensor Cores.

Using differentmatrixmultiplication implementations, we showed
that Fireiron is able to express optimizations used in hand-tuned
kernels written by experts. The code we generate generally matches
the performance of hand-tuned implementations and experts are
able to use Fireiron to improve the state-of-the-art by outperform-
ing vendor libraries by more than 2×.

ACKNOWLEDGMENTS
We thank Martin Lücke and Thomas Koehler for their support with
comparing against TVM and Halide. We also thank Julien Demouth
for his support with targeting Tensor Cores. This work has been
supported in part by the NSF Grants ACI OAC–1535191, FMitF CCF-
1918027, OIA-1936731, by the Intel and NSF joint research center for
Computer Assisted Programming for Heterogeneous Architectures
(CAPA NSF CCF-1723352), the CONIX Research Center, one of
six centers in JUMP, a Semiconductor Research Corporation (SRC)
program sponsored by DARPA CMU 1042741-394324 AM01, grants
from DARPA FA8750–14–C–0011 and DARPA FA8750–16–2–0032,
as well as gifts from Adobe, Facebook, Google, Intel, and Qualcomm.
The first author was financially supported by an NVIDIA Graduate
Fellowship.

REFERENCES
[1] Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li,

Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Du-
rand, and Jonathan Ragan-Kelley. 2019. Learning to optimize halide with tree
search and random programs. ACM Trans. Graph. 38, 4 (2019), 121:1–121:12.
https://doi.org/10.1145/3306346.3322967

[2] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jef-
frey Bosboom, Una-May O’Reilly, and Saman P. Amarasinghe. 2014. OpenTuner:
an extensible framework for program autotuning. In International Conference on
Parallel Architectures and Compilation, PACT ’14, Edmonton, AB, Canada, August
24-27, 2014. 303–316. https://doi.org/10.1145/2628071.2628092

[3] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Ab-
durrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and Saman P.
Amarasinghe. 2019. Tiramisu: A Polyhedral Compiler for Expressing Fast and
Portable Code. In IEEE/ACM International Symposium on Code Generation and
Optimization, CGO 2019, Washington, DC, USA, February 16-20, 2019. 193–205.
https://doi.org/10.1109/CGO.2019.8661197

[4] Uday Bondhugula. 2020. High Performance Code Generation in MLIR: An Early
Case Study with GEMM. CoRR abs/2003.00532 (2020).

[5] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. 2007. Parallel
Programmability and the Chapel Language. Int. J. High Perform. Comput. Appl.
21, 3 (2007), 291–312.

[6] Chun Chen, Jacqueline Chame, and Mary Hall. 2008. CHiLL: A framework for
composing high-level loop transformations. Technical Report. Citeseer.

[7] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q. Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos
Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End
Optimizing Compiler for Deep Learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10,
2018. 578–594. https://www.usenix.org/conference/osdi18/presentation/chen

[8] Alexander Collins, Dominik Grewe, Vinod Grover, Sean Lee, and Adriana Susnea.
2014. NOVA: A Functional Language for Data Parallelism. In ARRAY’14: Proceed-
ings of the 2014 ACM SIGPLAN International Workshop on Libraries, Languages,
and Compilers for Array Programming, Edinburgh, United Kingdom, June 12-13,
2014. 8–13. https://doi.org/10.1145/2627373.2627375

[9] Venmugil Elango, Norm Rubin, Mahesh Ravishankar, Hariharan Sandanagobal-
ane, and Vinod Grover. 2018. Diesel: DSL for linear algebra and neural net compu-
tations on GPUs. In Proceedings of the 2nd ACM SIGPLAN International Workshop
on Machine Learning and Programming Languages, MAPL@PLDI 2018, Philadel-
phia, PA, USA, June 18-22, 2018. 42–51. https://doi.org/10.1145/3211346.3211354

[10] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch, and
Christophe Dubach. 2018. High performance stencil code generation with lift.
In Proceedings of the 2018 International Symposium on Code Generation and Opti-
mization, CGO 2018, Vösendorf / Vienna, Austria, February 24-28, 2018. 100–112.
https://doi.org/10.1145/3168824

[11] Halide. 2020. MatMulGenerator. https://github.com/halide/Halide/blob/master/
apps/cuda_mat_mul/mat_mul_generator.cpp

[12] Troels Henriksen, Niels G.W. Serup,Martin Elsman, Fritz Henglein, and Cosmin E.
Oancea. 2017. Futhark: purely functional GPU-programming with nested paral-
lelism and in-place array updates. In Proceedings of the 38th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2017, Barcelona,
Spain, June 18-23, 2017. 556–571. https://doi.org/10.1145/3062341.3062354

[13] Jianyu Huang, Chenhan D. Yu, and Robert A. van de Geijn. 2018. Imple-
menting Strassen’s Algorithm with CUTLASS on NVIDIA Volta GPUs. CoRR
abs/1808.07984 (2018).

[14] Chris Lattner, Jacques A. Pienaar, Mehdi Amini, Uday Bondhugula, River Riddle,
Albert Cohen, Tatiana Shpeisman, Andy Davis, Nicolas Vasilache, and Oleksandr
Zinenko. 2020. MLIR: A Compiler Infrastructure for the End of Moore’s Law.
CoRR abs/2002.11054 (2020).

[15] NVIDIA. 2020. CUDA WMMA Sample Kernel - CUDA Tensor Core
GEMM. https://github.com/NVIDIA/cuda-samples/blob/master/Samples/

cudaTensorCoreGemm/cudaTensorCoreGemm.cu
[16] NVIDIA. 2020. CUTLASS: Fast Linear Algebra in CUDA C++. https://devblogs.

nvidia.com/cutlass-linear-algebra-cuda/
[17] NVIDIA. 2020. Programming Tensor Cores. https://devblogs.nvidia.com/

programming-tensor-cores-cuda-9/
[18] NVIDIA. 2020. PTX - MMA Instructions. https://docs.nvidia.com/cuda/parallel-

thread-execution/index.html#warp-level-matrix-instructions-mma
[19] Georg Ofenbeck, Tiark Rompf, Alen Stojanov, Martin Odersky, and Markus

Püschel. 2013. Spiral in scala: towards the systematic construction of generators
for performance libraries. In Generative Programming: Concepts and Experiences,
GPCE’13, Indianapolis, IN, USA - October 27 - 28, 2013. 125–134. https://doi.org/
10.1145/2517208.2517228

[20] Phitchaya Mangpo Phothilimthana, Archibald Samuel Elliott, An Wang, Abhinav
Jangda, Bastian Hagedorn, Henrik Barthels, Samuel J. Kaufman, Vinod Grover,
Emina Torlak, and Rastislav Bodík. 2019. Swizzle Inventor: Data Movement
Synthesis for GPU Kernels. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2019, Providence, RI, USA, April 13-17, 2019. 65–78. https:
//doi.org/10.1145/3297858.3304059

[21] Markus Püschel, JoséM. F. Moura, Jeremy R. Johnson, David A. Padua, ManuelaM.
Veloso, Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voro-
nenko, Kang Chen, Robert W. Johnson, and Nicholas Rizzolo. 2005. SPIRAL:
Code Generation for DSP Transforms. Proc. IEEE 93, 2 (2005), 232–275. https:
//doi.org/10.1109/JPROC.2004.840306

[22] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman P.
Amarasinghe, and Frédo Durand. 2012. Decoupling algorithms from schedules
for easy optimization of image processing pipelines. ACM Trans. Graph. 31, 4
(2012), 32:1–32:12. https://doi.org/10.1145/2185520.2185528

[23] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman P. Amarasinghe. 2013. Halide: a language and compiler
for optimizing parallelism, locality, and recomputation in image processing
pipelines. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013. 519–530. https:
//doi.org/10.1145/2491956.2462176

[24] Ari Rasch and Sergei Gorlatch. 2019. ATF: A generic directive-based auto-tuning
framework. Concurr. Comput. Pract. Exp. 31, 5 (2019).

[25] Ari Rasch, Richard Schulze, and Sergei Gorlatch. 2019. Generating Portable
High-Performance Code via Multi-Dimensional Homomorphisms. In PACT. IEEE,
354–369.

[26] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2017. Lift: a func-
tional data-parallel IR for high-performance GPU code generation. In Proceedings
of the 2017 International Symposium on Code Generation and Optimization, CGO
2017, Austin, TX, USA, February 4-8, 2017. 74–85.

[27] TVM. 2020. How to optimize GEMM on CPU. https://docs.tvm.ai/tutorials/
optimize/opt_gemm.html

[28] TVM. 2020. How to optimize matmul with Auto TensorCore CodeGen. https:
//docs.tvm.ai/tutorials/optimize/opt_matmul_auto_tensorcore.html

[29] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,
Zachary DeVito, William S. Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. 2018. Tensor Comprehensions: Framework-Agnostic High-Performance
Machine Learning Abstractions. CoRR abs/1802.04730 (2018). arXiv:1802.04730
http://arxiv.org/abs/1802.04730

[30] Sven Verdoolaege, Serge Guelton, Tobias Grosser, and Albert Cohen. 2014. Sched-
ule Trees. In Proceedings of the 4th International Workshop on Polyhedral Com-
pilation Techniques, Sanjay Rajopadhye and Sven Verdoolaege (Eds.). Vienna,
Austria.

[31] SvenVerdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Christian
Tenllado, and Francky Catthoor. 2013. Polyhedral parallel code generation for
CUDA. TACO 9, 4 (2013), 54:1–54:23. https://doi.org/10.1145/2400682.2400713

[32] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun,
and Saman P. Amarasinghe. 2018. GraphIt: a high-performance graph DSL.
PACMPL 2, OOPSLA (2018), 121:1–121:30. https://doi.org/10.1145/3276491

https://doi.org/10.1145/3306346.3322967
https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1109/CGO.2019.8661197
https://www.usenix.org/conference/osdi18/presentation/chen
https://doi.org/10.1145/2627373.2627375
https://doi.org/10.1145/3211346.3211354
https://doi.org/10.1145/3168824
https://github.com/halide/Halide/blob/master/apps/cuda_mat_mul/mat_mul_generator.cpp
https://github.com/halide/Halide/blob/master/apps/cuda_mat_mul/mat_mul_generator.cpp
https://doi.org/10.1145/3062341.3062354
https://github.com/NVIDIA/cuda-samples/blob/master/Samples/cudaTensorCoreGemm/cudaTensorCoreGemm.cu
https://github.com/NVIDIA/cuda-samples/blob/master/Samples/cudaTensorCoreGemm/cudaTensorCoreGemm.cu
https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/
https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/
https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/
https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma
https://doi.org/10.1145/2517208.2517228
https://doi.org/10.1145/2517208.2517228
https://doi.org/10.1145/3297858.3304059
https://doi.org/10.1145/3297858.3304059
https://doi.org/10.1109/JPROC.2004.840306
https://doi.org/10.1109/JPROC.2004.840306
https://doi.org/10.1145/2185520.2185528
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/2491956.2462176
https://docs.tvm.ai/tutorials/optimize/opt_gemm.html
https://docs.tvm.ai/tutorials/optimize/opt_gemm.html
https://docs.tvm.ai/tutorials/optimize/opt_matmul_auto_tensorcore.html
https://docs.tvm.ai/tutorials/optimize/opt_matmul_auto_tensorcore.html
https://arxiv.org/abs/1802.04730
http://arxiv.org/abs/1802.04730
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1145/3276491

	Abstract
	1 Introduction
	2 Achieving High GPU Performance
	3 Rethinking Scheduling Languages
	3.1 Specifications
	3.2 Decompositions
	3.3 Advanced Optimization using Refinements

	4 Code Generation and Optimization
	4.1 Supporting WMMA in CUDA
	4.2 Supporting mma.sync in PTX

	5 Evaluation
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

