Checked C for Safety, Gradually

Andrew Ruef Archibald Samuel Elliott Ian Sweet
University of Maryland University of Washington University of Maryland
Michael Hicks David Tarditi

University of Maryland Microsoft Research

Abstract

This paper presents Checked C, an extension to C designed
to support spatial safety, implemented in Clang and LLVM.
Checked C’s design is distinguished by its focus on backward-
compatibility, developer usability, and enabling highly per-
formant code. Like past approaches to a safer C, Checked
C employs a form of checked pointer whose accesses can be
statically or dynamically verified. New to Checked C is the
notion of a checked region. Inspired by the blame theorem
from gradual typing, checked regions can be held blameless
as the source of a safety violation, meaning it must have
arisen from unchecked code. We formalize and prove this
property using the Coq proof assistant. To assist program-
mers in migrating legacy code to Checked C, we have im-
plemented a porting tool that introduces the use of checked
pointers, where safe. Experiments on standard benchmarks
and some legacy programs show that Checked C generates
efficient code, and that the porting tool is useful.

1 Introduction

Vulnerabilities that compromise memory safety are at the
heart of many devastating attacks. Memory safety has two
aspects. Temporal safety is ensured when memory is never
used after it is freed. Spatial safety is ensured when any
pointer dereference is always within the memory allocated to
that pointer. Buffer overruns—a spatial safety violation—still
constitute a frequent and pernicious source of vulnerabil-
ity, despite their long history. During the period 2012-2016,
buffer overruns were the source of 9.7% to 18.4% of CVEs
reported in the NIST vulnerability database [36], with the
highest numbers occurring in 2016. During that time, buffer
overruns were the leading single cause of CVEs.

Spatial safety violations commonly arise when program-
ming low-level, performance critical code in C and C++.
While a type-safe language disallows such violations [49],
using one is impractical when low-level control is needed.
Building on research from projects such as Cyclone [26] and
Deputy [57], modern languages like Rust [42] and Go [21]
provide a promising balance of safety and performance, but
to use them requires programmer retraining and extensive
rewrites of legacy code.

As discussed in depth in Section 7, several efforts have
attempted to make C programs safe. Static analysis tools [2,

Draft: 17 November 2017

6, 29] aim to find vulnerabilities pre-deployment, but may
miss bugs, have trouble scaling, or emit too many alarms.
Security mitigations, such as WeX [45] and CFI [1], can
mute the impact of vulnerabilities by making them harder
to exploit, but provide no guarantee; e.g., data leaks and
mimicry attacks may still be possible. Several efforts have
aimed to provide spatial safety by adding run-time checks;
these include CCured [34], Softbound [33], and ASAN [44].
The added checks can add substantial overhead and can
complicate interoperability with legacy code if pointer rep-
resentations are changed. Lower overhead can be achieved
by reducing safety, e.g., by checking only writes, or ignoring
overruns within a memory region (e.g., from one stack vari-
able to another, or one struct field to another). In the end, no
existing approach is completely satisfying.

This paper presents a new effort towards achieving a
spatially-safe C that we call Checked C. Checked C borrows
many ideas from prior safe-C efforts but ultimately differs
in that its design focuses on interoperability, developer us-
ability, and enabling highly performant code. Checked C
and legacy C can coexist, so developers are able to port
legacy code incrementally. This approach does allow for
defects and vulnerabilities in non-converted regions of the
program. However, taking inspiration from work on gradual
typing [30, 46, 53], Checked C gives developers a way to
distinguish “checked” from “unchecked” regions. The former
can be held blameless as the source of any safety violation,
so software assurance attention can be focused on the latter.

Technically speaking, Checked C’s design has three key
features. First, all pointers in Checked C are represented as
in normal C—no changes to pointer layout are imposed. This
eases interoperability.

Second, the legal boundaries of pointed-to memory are
specified explicitly; the goal here is to enhance human read-
ability and maintainability while supporting efficient com-
pilation and running times. As an example, consider the
following code declarations:

size_t dst_count;

_Array_ptr<char> dst count (dst_count);

The _Array_ptr<char>type is a Checked C type for a bounds-
checked array, and the count annotation indicates how the
bounds should be computed. In this case dst’s bounds are
stored in the variable dst_count, but other specifications,
such as pointer ranges, are also possible. Checked C also

Andrew Ruef, Archibald Samuel Elliott, lan Sweet, Michael Hicks, and David Tarditi

has a _Ptr<T> type for pointers to single T values, and a
_Nt_array_ptr<T> type for pointers to NUL (zero) terminated
arrays. Checked type information is used by the compiler to
either prove that an access is safe, or else to insert a bounds
check when such a proof is too difficult. Programmers can
also use annotations to help the compiler safely avoid adding
unnecessary checks in performance-critical code.

Finally, Checked C supports the concept of designated
checked regions of code. Within these regions, use of unchecked
pointers is essentially disallowed, so the above-mentioned
checks are sufficient to ensure that execution is spatially safe:
no failure will occur within the region assuming its checked
pointers are well formed (i.e., they have not been corrupted
through prior execution of unchecked code). In short, in
the parlance of gradual typing, “checked code cannot be
blamed” [53] for a spatial safety violation. We have formal-
ized the core features of Checked C and proved it satisfies
the blame theorem, mechanizing most of the proof using the
Coq proof assistant.

Several prior efforts have eschewed annotations, citing the
programmer cost of adding them to legacy code. However, in
our experience programmers have a sense of the extents and
invariants of memory objects and prefer to document and
enforce them, but C gives them no easy mechanism to write
them down. To assist in the process of updating legacy code,
Checked C employs an automated tool to partially rewrite an
application to use Checked C types. We believe this approach
strikes the right balance: A best-effort analysis can be applied
to the whole program to assist in porting, but once ported, a
program’s annotations ensure efficient checking and assist
readability and maintainability. The rewriter uses a global,
path-insensitive unification-based algorithm to infer when
variables, structure fields, function parameters, and function
return values might be converted to Checked C _Ptr<T> and
_Array_ptr<T> types. It automatically rewrites the program
to add the former types, and points to locations for the latter,
at which the programmer can convert them by hand, adding
needed bounds expressions. To avoid one unsafe pointer use
forcing all transitive uses to be unchecked, the rewriter may
insert casts, taking advantage of Checked C’s ability to mix
checked and unchecked code.

Contributions This paper makes four main contributions.
First, in Section 2, we present Checked C’s design and its
rationale, introducing its various features by example.
Second, in Section 3, we formalize the core ideas in the
design of Checked C in a core calculus called CoReCHKC. We
show that, in the style of gradual typing, any misbehavior
can be blamed on unchecked code—either it will misbehave
directly, or could induce misbehavior in checked code.
Third, as described in Section 4, we have implemented
Checked C as an extension to Clang and LLVM. Since Checked
C is a backwards compatible superset of C, any project that
compiles today with Clang and LLVM can compile with

void next(int *b, int idx, _Ptr<int>out) {
int tmp = x(b+idx);
*out = tmp;

Figure 1. Example use of _Ptr<T>

Checked C. As reported in Section 6, we converted most
of the standard Olden and Ptrdist benchmark suites to use
Checked C. On average, we modified 17.5% of the bench-
mark code so that 90.7% of it could be placed in checked
regions. The mean run-time slowdown is 8.6%, which gener-
ally matches or betters Deputy [57] and CCured [34] on the
same benchmarks.

Finally, as described in Section 5 we have implemented a
tool to automatically convert existing C programs to Checked
C programs. This tool performs a whole-program, context-
and flow-insensitive analysis to identify types that can be
replaced with Checked C types, and automatically rewrites
them. In about 35 minutes of work the rewriter was able
to replace between 37% and 69% of C pointer types with
_Ptr<T> types in six benchmark programs, comprising more
than 290KLOC.

Checked C is under active and ongoing development, and
available on the Internet at https://github.com/Microsoft/
checkedc.

2 Checked C

This section presents an overview of Checked C.

2.1 Basics

The Checked C extension extends the C language with two
additional checked pointer types: _Ptr<T>, _Array_ptr<T>and
_Nt_array_ptr<T>.! The _Ptr<T> type indicates a pointer
that is used for dereference only and has no arithmetic per-
formed on it, while _Array_ptr<T> and _Nt_array_ptr<T>
support arithmetic with bounds declarations provided in the
type. The latter requires NUL termination, which affords
some flexibility on determining bounds. The compiler stati-
cally or dynamically confirms that checked pointers are valid
when they are dereferenced. In blocks or functions desig-
nated as checked code, it imposes stronger restrictions to uses
of unchecked pointers that could corrupt checked pointers,
e.g., via aliases. We would expect a Checked C program to
involve a mixed of both checked and unchecked code, and a
mix of checked and unchecked pointer types.

2.2 Simple pointers

Using _Ptr<T> is straightforward: any pointer to an object
that is only referenced indirectly, without any arithmetic or
array subscript operations, can be replaced with a _Ptr<T>.

1We use the C++ style syntax for programmer familiarity, and precede the
names with an underscore to avoid parsing conflicts in legacy libraries.

https://github.com/Microsoft/checkedc
https://github.com/Microsoft/checkedc

Checked C for Safety, Gradually

void buf_copy(
_Array_ptr<char> dst count (dst_count),
_Array_ptr<char> src count(src_count),
size_t dst_count, size_t src_count)

_Dynamic_check(src_count <= dst_count);

for (size_t i = @; i < src_count; i++) {
if (srcl[i] ==) break;

else { dst[i] = src[il]; }

Figure 2. Example use of _Array_ptr<T>

For example, one frequent idiom in C programs is an out
parameter, used to indicate an object found or initialized
during parsing. Figure 1 shows using a _Ptr<int> for the out
parameter. When this function is called, the compiler will
confirm that it is given a valid pointer, or null. Within the
function, the compiler will insert a null check before writing
to out. Null checks are elided when the compiler can prove
they are unnecessary.

2.3 Arrays

The _Array_ptr<T> type identifies a pointer to an array of
values. Prior safe-C efforts sometimes involve the use of
fat pointers, which consist both of the actual pointer and
information about the bounds of pointed-to memory. Rather
than changing the run-time representation of a pointer to
support bounds checking, in Checked C the programmer
associates a bounds expression with each _Array_ptr<T> type
to indicate where the bounds are stored. The compiler proves
that indexing an _Array_ptr<T> is safe or else inserts a run-
time check. Bounds expressions consist of non-modifying
C expressions and can involve variables, parameters, and
struct field members.

Figure 2 shows using _Array_ptr<T> with declared bounds
as parameters to a function. In particular, the types of dst
and src have bound expressions that refer to the function’s
other two parameters. (On struct members, bounds decla-
rations may refer to the same struct’s fields.) In the body
of the function, both src and dst are accessed as expected.
Bounds checks on src are elided because the compiler can
prove that i < src_count, the size of src. Checks on dst are
elided thanks to the _Dynamic_check placed outside the loop.
Like an assert, this predicate signals a run-time error if the
condition is false, but it is only removed if proven redundant.
Here, its existence assures the compiler that i < dst_count
(transitively), so no per-iteration checks are needed.

There are two other ways to specify array bounds. The first
is a range, specified by base and bounds pointers. For exam-
ple, the bounds expression on dst from Figure 2 could have
been written bounds(dst,dst+dst_count). The second is an
alternative to count called bytecount, which can be applied

size_t my_strlcpy(
_Nt_array_ptr<char> dst: count(dst_sz),
_Nt_array_ptr<char> src, size_t int dst_sz)
{
size_t i = 0;
_Nt_array_ptr<char> s
while (s[i] !=
dst[i] = s[il;
++1;
}
dstl[i] = ;
return i;

count (i) = src;
&& 1 < dst_sz) {

Figure 3. Example use of _Nt_array_ptr<T>

to either void* or _Array_ptr<void> types. A bytecount(n)
expression applied to a pointer p would be equivalent to the
range p through (char *)p+n. An example of this is given at
the end of this section.

We can also annotate an array declaration as _Checked
and any auto-promoted address to that array is treated as a
checked _Array_ptr<T>. We add a restriction that all inner
dimensions of checked arrays also be checked. We see both
of these situations in Figure 4, shortly.

2.4 NUL-terminated Arrays

The _Nt_array_ptr<T> type identifies a pointer to an array
of values (often chars) that ends with a NUL (). The
bounds expression identifies the known-to-be-valid range
of the pointer. This range can be expanded by reading the
character just past the bounds to see if it is NUL.?2 If not,
then the bounds can be expanded by one. Otherwise, the
current bounds cannot be expanded, and only a may
be written to this location. _Nt_array_ptr<T> types without
explicit bounds default to bounds of count (@), meaning that
index 0 can be read safely. A _Nt_array_ptr<T> can be cast to
a _Array_ptr<T> safely; as an _Array_ptr<T> the character
just past the bounds can no longer be read or written, thus
preserving the zero-termination invariant for any aliases.

An example use of _Nt_array_ptr<T> is given in Figure 3.
It implements the strlcpy libC routine, which copies src to
dst, which can contain at most dst_sz characters. We must
alias src into the local variable s so that its count, i, can
grow dynamically as the loop executes.

2.5 Checked and Unchecked Regions

The safety provided by checked pointers can be thwarted by
unsafe operations, such as writes to traditional pointers. For
example, consider this variation of the code in Figure 1:

void more(int xb, int i, _Ptr<int *>out) {
int oldi = i, c;

2This means that bounds of count(n) requires allocating n+1 bytes.

Andrew Ruef, Archibald Samuel Elliott, lan Sweet, Michael Hicks, and David Tarditi

int *out;
_Checked void foo(void) {
_Ptr<int> ptrout = 0;
_Unchecked {
if (out != (int *)0) {
ptrout = (_Ptr<int>)out; // cast 0K
} else { return; }
}
int b _Checked[5][51;
for (int 1 = 0; 1 < 5; i++) {
for (int j = 0; j < 5; j++) {
b[il[j] = -1; // access safe
T}
*ptrout = b[OJ[0];

Figure 4. _Unchecked and _Checked regions (and array)

do {
c = readvalue();
b[i++] = c;
} while (c != 0);
*out = b+i-oldi;

This function repeatedly reads an input value into b until
a 0 is read, at which point it returns an updated b pointer
via the checked out parameter. While we might expect that
writing to out is safe, since it is a checked pointer, it will not
be safe if the loop overflows b and in the process modifies
out to point to invalid memory.

In a program with a mix of checked and unchecked point-
ers we cannot and should not expect complete safety. How-
ever, we would like to isolate which code is possibly danger-
ous, i.e., whether it could be the source of a safety violation.
Code review and other efforts can then focus on that code.
For this purpose Checked C introduces the notion of checked
code regions. Such code is designated specifically at the level
of a file (using a pragma), a function (by annotating its pro-
totype), or a single block (by labeling that block, similar to
an asm block). Explicitly labeled unchecked regions may also
appear within checked ones.

Figure 4 shows a checked function foo, which references
unchecked pointer out within an explicitly labeled _Unchecked
block. Without this label, the compiler would forbid this
cast since it is a potential source of problems (i.e., if out
was bogus). Within a checked region both null and bounds
checks on checked pointers are employed as usual, but ad-
ditional restrictions are also imposed. In particular, explicit
declarations of and casts, reads, and writes from unchecked
pointer types are disallowed. Checked regions may neither
use varargs nor K&R-style prototypes. These restrictions are
meant to ensure that the entire execution of a checked region
is spatially safe. This means that assuming checked pointers

size_t fwrite(
const void x ptr byte_count(sizexnmemb),
size_t size, size_t nmemb,

FILE * stream itype (_Ptr<FILE>));

Figure 5. Standard library checked interface

have been constructed properly (in particular, they have not
been corrupted by the execution of unchecked code prior to
entering the checked region), no safety violations will occur
due to dereferencing a pointer into illegal memory. Section 3
makes this guarantee precise, and proves that it holds.

Checked C also permits ascribing checked types to unchecked

functions. We use this feature in a set of checked headers for
the C standard library. As an example, the type we give to
the fwrite function is shown in Figure 5. The first argument
to the function is the target buffer whose size (in bytes) is
given by the second and third arguments. The final argu-
ment is a FILE pointer whose type depends on whether it
is being called from checked or unchecked code. For the
former, the type is given by the itype annotation, indicating
it is expected to be a checked pointer. For the latter, it is the
“normal” type of the argument.

2.6 Restrictions and Limitations

Checked C’s design currently imposes several restrictions.

First, to ensure that checked pointers are valid by construc-
tion, we require that checked pointer variables be initialized
when they are declared. In addition, heap-allocated mem-
ory that contains checked pointers (like a struct or array of
checked pointers) or is pointed to by a _Nt_array_ptr<T>
must use calloc to ensure safe initialization. We plan to em-
ploy something akin to Java’s definite initialization analysis
to relax this requirement, at least somewhat.

Second, _Array_ptr<T> values can be dereferenced follow-
ing essentially arbitrary arithmetic; e.g., if x is an _Array_ptr
<int> we could dereference it via *(x+y-n+1) and the com-
piler will insert any needed checks to ensure the access is
legal. However, updates to _Array_ptr<T> values are cur-
rently more limited. For example, we might like to replace
the loop in Figure 2 with the following:

for (size_t i = @; i < src_count; i++) {
if (*src ==) break;
*dst = *src;
src++; dst++;

}

The problem is that the bounds declared for src are tanta-
mount to the range (src,src+src_count), which would mean
that updating src to src+1 would invalidate them, as the
upper bound would be off by one. At the moment, this sort
of arithmetic is allowed by assigning src and dst to tempo-
rary variables; updating these variables is OK because the
bounds would be in terms of src and dst, which would not

Checked C for Safety, Gradually

Mode m clu
Word types 7 == int|ptr”w
Types w T |structT |arraynrt
Expressions e = n'|x|letx = e ine

| malloc@uw | (7)e

| e +e| &e—f

| =xe| *e; =ey | unchecked e
Structdefs D € T — fs
Fields fs u= of|cffs

Figure 6. CoRECHKC Syntax

change. We plan to support flow-sensitive bounds so that,
for example, the update src++ would update src’s bounds to
(src,src+src_count-i).

Finally, some elements of our static analysis for confirm-
ing safe usage are designed but not fully implemented. We
elaborate on these in Section 4.

3 Formalism: CORECHKC

This section presents a formal language CorReCHKC that
models the essence of Checked C. The language is designed
to be simple but nevertheless highlight Checked C’s key
features: checked pointers; checked code blocks, which are
prevented from using unchecked pointers and certain casts;
and unchecked code blocks, which may manipulate pointers
as they wish. After presenting the syntax, semantics, and
type system of CORECHKC, we state and prove its key guar-
antee: Checked code cannot be blamed for a spatial violation.

3.1 Syntax

The syntax of CORECHKC is presented in Figure 6. Types
7 classify word-sized objects while types w also include
multi-word objects. The type ptr™w types a pointer, where
m identifies its mode: mode c identifies a Checked C safe
pointer, while mode u represents an unchecked pointer. In
other words ptrer is a checked pointer type _Ptr<r> while
ptr¥r is an unchecked pointer type r*. Multiword types
include struct records, and arrays of type 7 having size n,
i.e., ptrfarray n 7 represents a checked array pointer type
_Array_ptr<r> with bounds n. We assume structs are de-
fined separately in a map D from struct names to their con-
stituent field definitions.

Programs are represented as expressions e; we have no
separate class of program statements, for simplicity. Expres-
sions include (unsigned) integers n”, local variables x, which
are introduced by let-bindings let x = e; in ey; there is no
type annotation on variable x because it can be inferred from
context. Constant integers n are annotated with type 7 to
indicate their intended type. As in an actual implementation,
pointers in our formalism are represented as integers. Anno-
tations help formalize type checking and the safety property
it provides; they have no effect on the semantics except when

7 is a checked pointer, in which case they facilitate null and
bounds checks. Local variables can only hold word-sized
objects, so all structs can only be accessed by pointers.

Checked pointers are constructed using malloc@w; for
simplicity, we do not consider numeric arguments to malloc,
but just include the type. Thus, malloc@int produces a
pointer of type ptr€int while malloc@(array 10 int) pro-
duces a pointer of type ptr€(array 10 int). Unchecked point-
ers can only be produced by the cast operator, (7)e, e.g., by
doing (ptr*int)malloc@int. Casts can also be used to co-
erce between integer and pointer types and between different
multi-word types.

Pointers are read via the * operator, and assigned to via
the = operator. To read or write struct fields, a program can
take the address of that field and read or write that address,
e.g., x—f is equivalent to *(&x— f). To read or write an
array, the programmer can use pointer arithmetic to access
the desired element, e.g., x[i] is equivalent to *(x + i).

By default, CoRECHKC expressions are assumed to be
checked. Expression e in unchecked e is unchecked, giving
it additional freedom: Checked pointers may be created via
casts, and unchecked pointers may be read or written.

Design Notes. CoReECHKC leaves out many interesting C lan-
guage features. We do not include an operation for freeing
memory, since this paper is concerned about spatial safety,
not temporal safety. CORECHKC models statically sized ar-
rays but supports dynamic indexes; supporting dynamic sizes
is interesting but less important compared to the complexity
it adds the formalism. Making ints unsigned simplifies han-
dling pointer arithmetic. We do not model control operators
or function calls, whose addition would be straightforward.
Function calls f(e’) can be modeled by let x = e; in ey,
where we can view x as function f’s parameter, e; as its
body, and e; as its actual argument. Calls to unchecked func-
tions from checked code can thus be simulated by having an
unchecked e expression for e;. We chose to make checked
mode the default in the formalism, but making it unchecked
would have been equally easy, as would be the addition of
checked e expression.

3.2 Semantics

Figure 7 shows a portion of the small-step operational seman-
tics for CoReCHKC expressions; the full semantics is given
in Appendix A. The figure defines judgment H;e —™ H;r.
Here, H is a heap, which is a partial map from integers (rep-
resenting pointer addresses) to type-annotated integers n”.
m is the mode of evaluation, which is either ¢ for checked
mode, or u for unchecked mode. Finally, r is a result, which is
either an expression e, Null (indicating a null pointer derefer-
ence), or Bounds (indicating an out-of-bounds array access).
An unsafe program execution occurs when the expression
reaches a stuck state — the program is not an integer n”, and
yet no rule applies. Notably, this could happen if trying to

Andrew Ruef, Archibald Samuel Elliott, lan Sweet, Michael Hicks, and David Tarditi

C-Exp

mode(_) =c
q H 7 7 e = Eleo] L, m= r,node(Ez mode(unchecked E) =u
cap € Xz H;eg~ H'; ¢, e’ = E[e)) mode(let x = Eine) =
Result r == e |Null | Bounds e
. H;e —™ H';e mode(E + e) =
Contexts E = _|letx = Eine mode(n + E) _
| ExelntE C-Harr mode(&E— f) ;
| &E—-f|(1)E e = E[eg] m = mode(E) mode((7)E) _
| =*E|*E=e|*n=E , r =Null v
| unchecked E Hieg~ H'sr - Bound mode(<E) -
I = bounds mode(<E =e) =
H;e —™ H';r mode(+n = E) = mode(E)
Figure 7. Semantics (partial)
dereference a pointer n that is actually invalid, i.e., H(n) is T-LET
undefined. T-VAR T-VCONST Ftmer:n
The semantics is defined in the standard manner using x:7€el nt el Ix:titmey:t
evaluation contexts E. We write E[eg] to mean the expression Tr,x:7 Tr,n’:r Trpletx = e iney:t
that results from substituting ey into the “hole” _ of context
E. Rule C-Exp defines normal evaluation. It decomposes an T-INT T-PTRC
expression e into a context E and expression ey and then T=intVr=ptr‘oVv T =ptrw
evaluates the latter via H; ey ~» H’;e(, discussed below (and n=0V 70, ..., Tj—1 = types(D,)
defined in the Appendix, Figure 10). The annotation m is the T =ptrf(array 0 7’) Ln b Hn+ k). 0<k<j
evaluation mode, which is restricted by the mode(E) function, Trpnt:r Thpn':t
also given in Figure 7. The rule and this function ensure
that when evaluation occurs within e in some expression T-AMPER T-BINOPINT
unchecked e, then it does so in unchecked mode u; otherwise 'ty e:ptr™struct T TFpye:int
it may be in checked mode c. Rule C-Harrt halts evaluation D(T) = ..t f5 ... I'tpe:int

due to a failed null or bounds check.

The rules for the computation semantics H; ey ~ H'; ¢;
are straightforward. As mentioned above, the annotations
7 on literals n” indicate the type the program has ascribed
to n. When r is a checked pointer, the rules use it to model
bounds and null checks. For example, dereferencing n* where
T is ptrf(array ! 7p) produces Bounds when ! = 0 and Null
when n = 0. The semantics updates [, the array length, when
performing checked pointer arithmetic. When a type anno-
tation is not a checked pointer, the semantics ignores it. For
example, addition nlr1 + ngz ignores 7; and 7, when 7; is not
a checked pointer, and simply annotates the result with it.

3.3 Typing

The typing judgment I' +,, e : 7 says that expression e
has type 7 under environment I' when in mode m. Heap H
and struct map D are implicit parameters of the judgment;
they do not appear because they are invariant in deriva-
tions. Unchecked expressions are always checked in mode u,
otherwise we may use either mode.

I' maps variables x to types 7, and is used in rules T-Var
and T-Let as usual. Rule T-InT ascribes type 7 to literal n”
when 7 is int or an unchecked pointer type (so dereferencing
is only possible in unchecked code, and failure there is an
option), when n is 0 (and thus dereferencing it in checked

[bp &e—f:ptrey Thyer+e:int

T-MALLOC

I+, malloc@o : ptréow

T-CasT
T-UNCHECKED m=c = 1 # ptrfo (for any w)
Trye:r Tbpe:t
T+, unchecked e : 7 Tty (D)e: T
T-DEREF T-INDEX

T ke :ptr™ (array n)
I'b;ep:int
m=u=>m=u

Ttpe:ptr™o
w=TVw=arraynrt
m=u=>m=u

Fbpoxe: T Ty ox(ep+e): T
T-AssiGN T-INDASSIGN
ke :ptr”o I'tpe:ptr’™ (arrayn)
T'bpe:t I'k,ep:int

w=TVw=arraynrt
m=u=>m=u

T'bpes:t
m=u=>m=u

Tk e =eg: 7T Ihpox(ep+e)=e3:1

Figure 8. Typing

Checked C for Safety, Gradually

mode would produce Null) or it has type ptr¢(array 0 z’)
(since dereferencing it would produce Bounds).

Rule T-PtrC ensures checked pointers of type ptr€w are
consistent with the heap. This works by checking that the
pointed-to memory has types consistent with «. When doing
this, we add n” to I to properly handle cyclic heap struc-
tures, per rule T-VConst. A key feature of T-PtrC is that
it effectively confirms that all pointers reachable from the
given one are consistent; it says nothing about other parts
of the heap. For example, if some set of checked pointers is
only reachable via unchecked pointers then we are not con-
cerned whether the former are consistent, since they cannot
be accessed (directly) from checked pointers.

Rules T-Amper and T-BinopINT are unsurprising. Rule T-
Matroc produces checked pointers. Rule T-UNCHECKED intro-
duces unchecked mode, relaxing access rules. Rule T-Cast
enforces that checked pointers cannot be cast targets in
checked mode.

Rules T-Derer and T-AssiGN type pointer accesses. These
rules require unchecked pointers only be dereferenced in
unchecked mode. Rule T-INDEx permits reading a computed
pointer to an array, and rule T-INDAsSIGN permits writing to
one. These rules are not strong enough to permit updating a
pointer to an array after performing arithmetic on it (though
this is possible in our implementation). In general, Checked
C’s design permits overcoming such limitations through
selective use of casts in unchecked code.

3.4 Metatheory

Our main formal result is that well-typed programs will never
fail with a spatial safety violation that is due to a checked
region of code, i.e., checked code cannot be blamed. This result
is proved using two lemmas.

The first lemma, Progress, indicates that a well-typed pro-
gram either is a value, can take a step (in either mode), or
else is stuck in unchecked code. The latter is true if e only
type checks in mode u, or its (unique) context E has mode u.

Lemma 3.1 (Progress). If- by, e : T (under heap H) then one
of the following holds:

e ¢ is an integer n®

o There exists H', m’, and r such that H;e —™ H’;r
where r is either some e’, Null, or Bounds.

e m =u ore = E[e’'] and mode(E) = u for some E, e”.

The second lemma, Preservation, implies that if a well-
typed program in checked mode takes a checked step then
the resulting program is also well-typed in checked mode.

Lemma 3.2 (Preservation). IfT . e : t (under a heap H),
and+ T, and H;e —° H';r (for some H',r), then andr = e’
implies H > H' andT v, e’ : T (under heap H').

Here we write F I to mean #n” € T, ie, T just contains
mappings of variables to types. We write H > H' to mean

that for all n* if - + n* : 7 under H then - + n* : 7 un-
der H’. The proofs of both lemmas are by induction on the
typing derivation. The Preservation proof is the most deli-
cate, particularly ensuring H > H’ despite the creation or
modification of cyclic data structures.

With these results we can prove a blame theorem in the
style defined in the gradual typing literature [30, 46, 53]. In
particular, the theorem “well-typed code can’t be blamed” [53]
indicates that the statically typed part of a mixed-typing pro-
gram cannot be blamed for execution getting stuck; only
corruption by or execution of the dynamically typed compo-
nent can inhibit progress. For Checked C, the same situation
holds, respectively, for checked and unchecked code.

Theorem 3.3 (Checked code cannot be blamed). Suppose
- k¢ e : T (under heap H) and there exists H;, m;, and e; for
1<i<ksuchthatH;e —™ Hy;e; —™ ... —™k Hy;ey.
If Hy; ey is stuck then the source of the issue is unchecked code.

Proof. Suppose - +. e : r (under heap Hy). By Progress,
the only way the Hy; ey can be stuck is if e, = E[e”’] and
mode(E) = u; i.e., the term’s redex is in unchecked code.
Otherwise Hy; ek is not well typed, ie., - ¥, er : 7 (under
heap Hy). As such, one of the steps of the evaluation was in
unchecked code, i.e., there must exist some i where1 < i < k
and m; = u. This is because, by Preservation, a well-typed
program in checked mode that takes a checked step always
leads to a well-typed program in checked mode. O

This theorem means that a code reviewer can focus on
unchecked code regions, trusting that checked ones are safe.

We have mostly mechanized our paper proofs using the
Coq proof assistant.

4 Implementation

We have implemented Checked C as an extension to the
Clang/LLVM 5.0 compiler, comprising about 16.5k LoC added
or changed (per git diff). This section describes the various
changes we made. Our fork of Clang is available online at
https://github.com/Microsoft/checkedc-clang.

4.1 Overview

We extended the Clang C front-end to support the changes
described in Section 2; the LLVM IR’s analyses and optimiz-
ers were unchanged. We extended the C grammar to sup-
port checked pointers, bounds expressions, and (un)checked
blocks, and made corresponding changes to Clang’s data
structures and static type checker. The compiler enforces the
restrictions described in Sections 2 and 3 by statically con-
firming that array pointer bounds are correctly ascribed and
maintained, and by inserting run-time bounds and non-null
checks on pointer accesses, which are optimized away by
LLVM if they can be proved redundant.

https://github.com/Microsoft/checkedc-clang

Andrew Ruef, Archibald Samuel Elliott, lan Sweet, Michael Hicks, and David Tarditi

4.2 Checking Bounds

Ensuring that bounds expressions are correct requires two
steps. First, the subsumption check confirms that assigning to
an lvalue expression meets the bounds required of pointers
stored at the lvalue, i.e. the required pointer bounds are
subsumed by the rvalue bounds. (Subsumption also applies
to initialization and function parameter passing.) This check
allows assignment to narrow, but not to widen, the bounds
of the assigned value. Determining these bounds is generally
straightforward. In the simplest case, the bounds for pointers
stored at an lvalue are directly declared, e.g., for a local
variable or function parameter. When taking the address of a
struct’s member (&p->f), the pointer bounds are those of the
particular field. On the other hand, the address of an array
element retains the bounds of the whole array. For example,
the bounds of int x[5] are bounds(x, x+5*sizeof(int)), as
are the bounds of &x[3], rather than (say) bounds (x+3xsizeof
(int),x+4*xsizeof(int)).

Second, the compiler ensures bounds expressions are still
valid after a statement modifies a variable in that expression.
For example, in Figure 3 the bounds of s is count (i), but i
is modified in a loop that iterates over s looking for a NUL
terminator. For _Array_ptr<T> types, the modification is jus-
tified by subsumption: The updated bounds can be narrowed
but not widened. For _Nt_array_ptr<T> types, we can widen
the bounds by 1 byte if we know that the rightmost byte is

, e.g., due to a prior check, as is the case in Figure 3.

At the moment subsumption checking is rather primi-
tive, so some checks that could be statically proven are not.
The main issue is the need to perform a more sophisticated
dataflow analysis (at the Clang AST level) to gather and
consider relevant facts. The compiler warns when it cannot
(dis)prove a subsumption check and we manually review
the warnings. For spurious ones, we insert the code in an
_Unchecked block, or else perform a dynamic subsumption
check with _Dynamic_bounds_cast.

4.3 Run-time Checks

The compiler inserts run-time checks into the evaluation of
lvalue expressions whose lvalue is derived from a checked
pointer and whose lvalue will be used to access memory. For
example, *p produces an Ivalue; the run-time check is part
of the evaluation of *p. These checks are added to the AST,
which allows LLVM’s optimizers to remove them if it can
prove they will always pass.

Before any _Ptr<T> accesses the compiler inserts a check
that the pointer is non-null. Before any _Array_ptr<T> or
_Nt_array_ptr<T> access the compiler inserts a non-null
check followed by the required bounds check computed from
the inferred bounds. The compiler does not perform any
bounds checks during pointer arithmetic. Programmers can
insert dynamic checks (per Figure 2) via _Dynamic_check and
_Dynamic_bounds_cast; these, too, may be optimized away.

The compiler should also disallow arithmetic on a checked
pointer if (a) that pointer is null, or (b) the arithmetic would
overflow, since both operations could produce a bogus pointer.
We have not implemented these checks yet, but doing so
should be straightforward. The lack of these checks should
not negatively impact our experimental comparison in Sec-
tion 6. Closely related systems Deputy [57] and CCured [34]
lack the overflow check, too, and null checks on pointer
arithmetic should be inexpensive because they are easily
optimized. E.g., the null check on for loop-guard *p would
make redundant the null check on p++.

5 Automatic Porting

Porting legacy code to use Checked C’s features can be time
consuming. To assist the process, we developed a source-
to-source translator called checked-c-convert that discovers
safely-used pointers and rewrites them to be checked. This
section describes the tool; it is evaluated in Section 6.2.

5.1 Conversion tool design and overview

checked-c-convert aims to be sound while also producing ed-
its that are minimal and unsurprising. A rewritten program
should be recognizable by the author and it should be usable
as a starting point for both the development of new features
and additional porting. A particular challenge is to preserve
syntactic structure of the program. Previous, similar analyses
rarely interact well with the preprocessor (e.g., they consider
macro expansions rather than the original macro) and some-
times require combining multiple source files into one, prior
to analysis. These choices are problematic for us: We prefer
to rewrite one file at a time (perhaps taking into account
whole-program knowledge) and preserve the definition and
use of macros, and other formatting, in the source code.
The checked-c-convert tool is implemented as a clang libtool-

ing application. It traverses a program’s AST to generate con-
straints based on pointer usage, solves those constraints, and
rewrites the program by promoting some declared pointer
types to be checked, and inserting some casts. The tool op-
erates on post-preprocessed code, but has sufficient location
information to be able to rewrite the original source files.
Moreover, for macro expansions that have parameters, it
considers all expansions of those parameters together, so as
to be able to rewrite the original macro’s definition. In effect,
this produces a context- and flow-insensitive rewriting of
macros, just as would occur for functions.

5.2 Constraint logic and solving

The basic approach to infer a qualifier g; for each defined
pointer variable i. Inspired by CCured’s approach [34], qual-
ifiers can be either PTR, ARR and UNK, ordered as a lattice
PTR < ARR < UNK. Those variables with inferred qualifier
PTR can be rewritten into _Ptr<T> types, while those with
UNK are left as is. Those with the ARR qualifier are eligible

Checked C for Safety, Gradually

to have _Array_ptr<T> type. For the moment we only signal
this fact in a comment and do not rewrite because we cannot
always infer proper bounds expressions.

Qualifiers are introduced at each pointer declaration, i.e.,
parameter, variable, field, etc. Constraints are introduced as
a pointer is used, and take one of the following forms:

qi = PTR | ARR | UNK | g;
qi = ARR = gj = ARR
qi=UNK = gq;=UNK
-(¢q; = PTR | ARR | UNK)

This constraint language is quite similar to that of CCured [34].

An expression that performs arithmetic on a pointer with
qualifier g;, either via + or [], introduces a constraint g; =
ARR. Assignments between pointers introduce aliasing con-
straints of the form g; = g;. Casts introduce implication
constraints based on the relationship between the sizes of
the two types. If the sizes are not comparable, then both
constraint variables in an assignment-based cast are con-
strained to UNK via an equality constraint. One difference
from CCured is the use of negation constraints, which are
used to fix a constraint variable to a particular Checked
C type (e.g., due to a _Ptr<T> annotation). These would
cause problems for CCured, as they might introduce un-
resolvable conflicts. But Checked C’s allowance of checked
and unchecked code can resolve them using explicit casts,
as discussed below.

Constraints are generated for each file individually, at
first. Then these constraints are “linked” when it can be de-
termined that they refer to the same global definition. Solv-
ing the constraints produces a qualifier assignment q; = X
where X is PTR, ARR, or UNK. Each qualifier is initially as-
signed to PTR. Solving the constraints works iteratively by
propagating aliasing and equality constraints to UNK first;
then aliasing, equality and implication constraints involving
UNK; then aliasing, implication and equality constraints to
ARR. Like CCured, this algorithm runs in linear time propor-
tional to the number of pointer variables in the program.

One problem with unification-based analysis is that a sin-
gle unsafe use might “pollute” the constraint system by in-
troducing an equality constraint to UNK that transitively
constrains unified qualifiers to UNK as well. For example,
casting a struct pointer to a unsigned char buffer to write to
the network would cause all transitive uses of that pointer to
be unchecked. The tool takes advantage of Checked C’s abil-
ity to mix checked and unchecked pointers to solve this prob-
lem. In particular, constraints for each function are solved
locally, using separate qualifier variables for each external
function’s declared parameters. If a function declaration’s
parameters are lower in the lattice order than the definition’s
(e.g., the caller passes a _Ptr<int> to a function that requires
a intx), we insert a cast at the call site. This cast makes evi-
dent to the programmer the potential risk of the call, and can

Name LoC Description

bh 1,162 Barnes & Hut N-body force computation
bisort 262 Sorts using two disjoint bitonic sequences
em3d 476 Simulates electromagnetic waves in 3D
health 338 Simulates Columbian health-care system
mst 325 Minimum spanning tree using linked lists
perimeter 399 Perimeter of quad-tree encoded images
power 452 The Power System Optimization problem
treadd 180 Sums values in a tree

tsp 415 Estimates Traveling-salesman problem
voronoi 814 Voronoi diagram of a set of points
anagram 346 Generates anagrams from a list of words
be 5,194 An arbitrary precision calculator

ft 893 Fibonacci heap Minimum spanning tree
ks 549 Schweikert-Kernighan partitioning

yacr2 2,529 VLSI channel router

Table 1. Compiler Benchmarks. Top group is the Olden suite,
bottom group is the Ptrdist suite. Descriptions are from [4,
41]. We were unable to convert voronoi from the Olden suite
and bc from the Ptrdist suite using the current version of
Checked C.

be fixed manually if the callee is conservatively misclassified
by the tool.

6 Empirical Evaluation

This section presents an evaluation of the Checked C com-
piler and porting tool, considering performance and efficacy.

6.1 Compiler evaluation

We converted two existing C benchmarks as an initial evalu-
ation of the consequences of porting code to Checked C. We
quantify both the changes required for the code to become
checked, and the overhead imposed on compilation, running
time, and executable size.

We chose the Olden [41] and Ptrdist [4] benchmark suites,
described in Table 1, because they are specifically designed
to test pointer-intensive applications, and they are the same
benchmarks used to evaluate both Deputy [57] and CCured [34].
We did not convert bc from the Ptrdist suite and voronoi from
the Olden suite for lack of time, but plan to soon.

The evaluation results are presented in Table 2. Graphs of
these results are given in Appendix B. These were produced
using a 12-Core Intel Xeon X5650 2.66GHz, with 24GB of
RAM, running Red Hat Enterprise Linux 6. All compilation
and benchmarking was done without parallelism. We ran
each benchmark 21 times with and without the Checked
C changes using the test sizes from the LLVM versions of
these benchmarks. We report the median; we observed little
variance.

Andrew Ruef, Archibald Samuel Elliott, lan Sweet, Michael Hicks, and David Tarditi

Code Changes Observed Overheads
Name IM% EM% LU % RT+% CT %% ES=*%
bh 10.0 76.7 5.2 +0.2 +23.8 +6.2
bisort 21.8 843 7.0 0.0 +7.3 +3.8
em3d 353 664 169 +0.8 +18.0 -0.4
health 240 978 93 +21 +185 +6.7
mst 30,1 750 193 0.0 +6.3 -5.0
perimeter 9.8 923 5.2 0.0 +49 +0.8
power 15.0 69.2 3.9 00 +21.6 +8.5
treadd 172 923 204 +8.3 +83.1 +7.0
tsp 99 945 103 0.0 +47.6 +4.6
anagram 266 675 10.7 +235 +16.8 +5.1
ft 18.7 985 63 +259 +16.5 +11.3
ks 142 934 81 +128 +32.3 +26.7
yacr2 145 515 16.2 +49.3 +384 +245

Mean: 17.5 80.1 9.3 +8.6 +24.3 +7.4

Table 2. Benchmark Results. Key: LM %: Percentage of
Source LoC Modified, including Additions; EM %: Percent-
age of Code Modifications deemed to be Easy (see 6.1.1);
LU %: Percentage of Lines remaining Unchecked; RT +%:
Percentage Change in Run Time; CT +%: Percentage Change
in Compile Time; ES +%: Percentage Change in Executable
Size (. text section only). Mean: Geometric Mean.

6.1.1 Code Changes

On average, we modified around 17.5% of benchmark lines of
code. Most of these changes were in declarations, initializers,
and type definitions rather than in the program logic. In
the evaluation of Deputy [13], the reported figure of lines
changed ranges between 0.5% and 11% for the same bench-
marks, showing they have a lower annotation burden than
Checked C.

We modified the benchmarks to use checked blocks and
the top-level checked pragma. We placed code that could not
be checked because it used unchecked pointers in unchecked
blocks. On average, about 9.3% of the code remained unchecked
after conversion, with a minimum and maximum of 3.9%
and 20.4%. The cause was almost entirely variable-argument
printf functions.

We manually inspected changes and divided them into
easy changes and hard changes. Easy changes include: replac-
ing included headers with their checked versions; converting
a T to a _Ptr<T>; adding the _Checked keyword to an array
declaration; introducing a _Checked or _Unchecked region;
adding an initializer; and replacing a call to malloc with a
call to calloc. Hard changes are all other changes, includ-
ing changing a T* to a _Array_ptr<T> and adding a bounds
declaration, adding structs, struct members, and local vari-
ables to represent run-time bounds information, and code
modernization.

In all of our benchmarks, we found the majority of changes
were easy. In six of the benchmarks, the only “hard” changes
were adding bounds annotations relating to the parameters
of main.

In three benchmarks—em3d, mst, and yacr2—we had to
add intermediate structs so that we could represent the
bounds on _Array_ptr<T>s nested inside arrays. In mst we
also had to add a member to a struct to represent the bounds
on an _Array_ptr<T>. In the first case, this is because we
cannot represent the bounds on nested _Array_ptr<T>s, in
the second case this is because we only allow bounds on
members to reference other members in the same struct.
In em3d and anagram we also added local temporary vari-
ables to represent bounds information. In yacr2 there are
a lot of bounds declarations that are all exactly the same
where global variables are passed as arguments, inflating the
number of “hard” changes.

6.1.2 Observed Overheads

The average run-time overhead introduced by added dy-
namic checks was 8.6%. In more than half of the benchmarks
the overhead was less than 1%. We believe this to be an ac-
ceptably low overhead that better static analysis may reduce
even further.

In all but two benchmarks—treadd and ft—the added over-
head matches (is within 2%) or betters that of Deputy. For
yacr2 and em3d, Checked C does substantially better than
Deputy, whose overheads are 98% and 56%, respectively.
Checked C’s overhead betters or matches that reported by
CCured in every case but ft.

On average, the compile-time overhead added by using
Checked C is 24.3%. The maximum overhead is 83.1%, and
the minimum is 4.9% faster than compiling with C.

We also evaluated code size overhead, by looking at the
change in the size of . text section of the executable. This
excludes data that might be stripped, like debugging infor-
mation. Across the benchmarks, there is an average 7.4%
code size overhead from the introduction of dynamic checks.
Ten of the programs have a code size increase of less than
10%.

6.2 Porting Tool Evaluation

We also evaluated the efficacy of our porting tool. To do so,
we ran it on six programs and libraries and recorded how
many pointer types the rewriter converted and how many
casts were inserted. We chose these programs as they repre-
sent legacy, low level libraries that are used in commodity
systems and frequently in security-sensitive contexts.
Table 3 contains the results. The value in the _Ptr<T> col-
umn indicates the number of _Ptr<T> added to the program
that replace standard C pointers. These are re-written at
the location they are declared. After investigation, there are
usually two reasons that a pointer cannot be replaced with a
_Ptr<T>: either some arithmetic is performed on the pointer,

Checked C for Safety, Gradually

Program #of *

%/# Ptr Arr.

Unk. Casts(% Calls) LOC

zlib 1.2.8 649
sqlite 3.18.1

62%/406

5%/36
32781 40%/13330 2%/739 57%/18712

31%/207 174 (22%) 6220
25949 (35%) 134788

libarchive 3.3.1 20292 51%/10533 1%/218 47%/9541 6383 (17%) 80182
lua 5.3.4 4271 45%/1942 1%/76 52%/2253 407 (4%) 14585
libtiff 4.0.6 8687 37%/3278 2%/240 59%/5169 2119 (14%) 57091
vsftpd 3.0.3 2035 69%/1418 1%/32 28%/585 448 (9%) 15048

Table 3. Number of pointer types converted. The # of * column represents the number of pointer types in the program. The
Arr and Unk columns represent constraints where the rewriter determined that the access into the pointer was via indexing
(Arr) or that the constraints can’t be captured by the rewriter (Unk) due to casts, assignment to a non-zero literal, or some
other operation. The Casts column represents the number of casts inserted, compared to the percentage of call sites that were

re-written to include a cast.

or it is passed as a parameter to a library function for which a
bounds-safe interface does not exist. The table also indicates
the versions of each program as computed with cloc and the
number of casts inserted, compared to the percentage of call
sites re-written to include casts.

6.3 Additional Porting Experience

After using the porting tool on vsftpd, we spent a few days
on porting it further. It makes heavy use of pointers, and we
find that all three of our categories of checked pointer come
into heavy use. There are few idioms it uses that we can-
not support, apart from the expected low-level interactions
with the I/O subsystem. We detail our experience further in
Appendix C.

7 Related work

There has been extensive research addressing out-of-bounds
memory accesses in C [49]. The research falls into 4 cate-
gories: languages, implementations, static analysis, and se-
curity mitigations.

Safe languages. Cyclone [26] and Deputy [13, 57] are type-
safe dialects of C. Cyclone’s key novelty is its support for GC-
free temporal safety [22, 48]. Checked C differs from Cyclone
by being backward compatible (Cyclone disallowed many
legacy idioms) and avoiding pointer format changes (e.g.,
Cyclone used “fat” pointers to support arithmetic). Deputy
keeps pointer layout unchanged by allowing a programmer
to describe the bounds using other program expressions.
Checked C builds on this, but make bounds checking a first-
class part of the language. Deputy incorporates the bounds
information into the types of pointers by using dependent
types. This makes type checking hard to understand. Deputy
requires that values of all pointers stay in bounds so that
they match their types. To enforce this invariant (and make
type checking decidable), it inserts runtime checks before
pointer arithmetic. Checked C uses separate annotations
that describe bounds invariants instead of incorporating

bounds into pointer types and inserts runtime checks only
at memory accesses.

Like Cyclone, programming languages like D [17] and
Rust [42] aim to support safe, low-level systems-oriented
programming without requiring GC. Go [21] and C# [32]
target a similar domain. Legacy programs would need to
be ported wholesale to take advantage of these languages,
which could be a costly affair.

Safe C implementations. Rather than use a new language,
several projects have looked at new ways to implement
legacy C programs so as to make them spatially safe. The bcc
source-to-source translator [28] and the rtcc compiler [47]
changed the representations of pointers to include bounds.
The rtcc-generated code was 3 times larger and about 10
times slower. Fail-Safe C [37] changed the representation of
pointers and integers to be pairs. Benchmarks were 2 to 4
times slower. CCured [34] employed a whole-program anal-
ysis for transforming programs to be safe. Its transformation
involved changes to data layout (e.g., fat and “wild” pointers),
which could cause interoperation headaches. Compilation
was all-or-nothing: unhandled code idioms in one compila-
tion unit could inhibit compilation of the entire program. Our
rewriting algorithm is inspired by CCured’s analysis with
the important differences that (a) not every pointer need be
made safe, and (b) the output is not a step in compilation,
but programmer-maintainable source code.

Safety can also be offered by the loader and run-time
system. “Red zones”, used by Purify [25, 51] are inserted
before and after dynamically-allocated object and between
statically-allocated objects, where bytes in the red zone are
marked as inaccessible (at a cost of 2 bits per protected byte).
Red-zone approaches cannot detect out-of-bounds accesses
that occur entirely within valid memory for other objects
or stack frames or intra-object buffer overruns (a write to
an array in a struct that overwrites another member of the
struct). Checked C detects accesses to unrelated objects and
intra-object overruns.

Andrew Ruef, Archibald Samuel Elliott, lan Sweet, Michael Hicks, and David Tarditi

Similar tools include Bounds Checker [31], Dr. Memory
[9, 18], Intel Inspector [14], Oracle Solaris Studio Code Ana-
lyzer [38], Valgrind Memcheck [35, 52], Insure++ [39], and
AddressSanitizer (ASAN) [44]. ASAN is incorporated into
the LLVM and GCC compilers. It tracks the state of 8-byte
chunks in memory. It increases SPEC CPU program execu-
tion time by 73% when checking reads and writes and 26%
when only checking writes. SPEC CPU2006 average memory
usage is 3.37 times larger. Light-weight Bounds Checking
[24] uses a two-level table to reduce memory overhead.

Checking that accesses are to the proper objects can be
done using richer side data structures that track object bounds
and by checking that pointer arithmetic stays in bounds
[3, 19, 27, 33, 40, 43, 56]. Baggy Bounds Checking [3] pro-
vides a fast implementation of object bounds by reserving 1/n
of the virtual address space for a table, where n is the small-
est allowed object size and requiring object sizes be powers
of 2. It increases SPECINT 2000 execution time by 60% and
memory usage by 20%. SoftBound [33] tracks bounds infor-
mation by using a hash table or a shadow copy of memory. It
increases execution time for a set of benchmarks by 67% and
average memory footprint by 64%. SoftBound can check only
writes, in which case execution time increases by 22%. For
libraries that cannot be recompiled, wrapper functions must
be provided that update metadata. Checked C only requires
that checked headers be provided.

There is also work on adding temporal safety with dif-
ferent memory allocation implementations, e.g., via conser-
vative garbage collection [8] or regions [22, 48]. Checked
C focuses on spatial safety both due to its importance at
stopping code injection style attacks as well as information
disclosure attacks, though temporal safety is important and
we plan to investigate it in the future.

Static analysis. Static analysis tools take source or binary
code and attempt to find possible bugs, such as out-of-bounds
array accesses, by analyzing the code. Commercial tools in-
clude CodeSonar, Coverity Static Analysis, HP Fortify, IBM
Security AppScan, Klocwork, Microsoft Visual Studio Code
Analysis for C/C++, and Polyspace Static Analysis [6, 10, 20].
Static analysis tools have difficulty balancing precision and
performance. To be precise, they may not scale to large pro-
grams. While imprecision can aid scalability, it can result in
false positives, i.e., error reports that do not correspond to
real bugs. False positives are a significant problem [6]. As a
result, tools may make unsound assumptions (e.g., inspecting
only a limited number of paths through function [10]) but the
result is they may also miss genuine bugs (false negatives).
Alternatively, they may focus on supporting coding styles
that avoid problematic code constructs, e.g., pointer arith-
metic and dynamic memory allocation [2, 7, 16, 29]. Or, they
may require sophisticated side conditions on specifications,
i.e., as pre- and post-conditions at function boundaries, so
that the analysis can be modular, and thus more scalable [23].

Checked C occupies a different design point than static
analysis tools. It avoids problems with false positives by
deferring bounds checks to runtime—in essence, it trades
run-time overhead for soundness and coding flexibility. In
addition, Checked C avoids complicated specifications on
functions. For example, a modular static analysis might have
required the code in Figure 2 to include that src_count <
dst_count as a function pre-condition. While this constraint
is not particularly onerous, some specifications can be. In
Checked C, such side conditions are unnecessary; instead,
soundness ensured by occasional dynamic checks.

Security mitigations. Security mitigations employ runtime-
only mechanisms that detect whether memory has been cor-
rupted or prevent an attacker from taking control of a system

after such corruption. They include data execution preven-
tion (DEP), software fault isolation (SFI) [54] , address-space

layout randomization (ASLR) [50, 55], stack canaries [15],
shadow stacks [5, 12], and control-flow integrity (CFI) [1].
DEP, ASLR, and CFI focus on preventing execution of arbi-
trary code and control-flow modification. Stack protection

mechanisms focus on protecting data or return addresses on

the stack.

Checked C provides protection against data modification
and data disclosure attacks, which the other approaches do
not. For example, ASLR does not protect against data modifi-
cation or data disclosure attacks. Data may be located on the
stack adjacent to a variable that is subject to a buffer overrun;
the buffer overrun can be be used reliably to overwrite or
read the data. Shadow stacks do not protect stack-allocated
buffers or arrays, heap data, and statically-allocated data.
Chen et al. [11] show that data modification attacks that do
not alter control-flow pose a serious long-term threat. The
Heartbleed attack illustrates the damage possible.

Gradual Typing. As mentioned in Section 3.4 our theorem
“checked code cannot be blamed” takes inspiration from the
blame theorem in the gradual typing literature [30, 46, 53]. In
that setting types are checked at function call boundaries on
first-order data; checks on higher-order functions are delayed
until the function is called. In our setting, analogous checks
on pointer validity are delayed until a pointer is dereferenced.
Hence the precise source of a failure (e.g., which unchecked
region) is not tracked directly. Finding an efficient way of
doing this would be interesting future work.

8 Summary

This paper presented Checked C, an extension to C to help
enforce spatial safety. Checked C’s design is focused on inter-
operability with legacy C, usability, and efficiency. Checked
C’s novel notion of checked regions ensures that “checked
code cannot be blamed” for a safety violation; we have proved
this property for an idealized calculus CORECHKC, mostly
mechanizing the proof using the Coq proof assistant. Our

Checked C for Safety, Gradually

implementation of Checked C as a Clang/LLVM extension en-
joys good performance. To assist in incrementally strength-
ening legacy code, we have developed a porting tool for
automatically rewriting code to use checked pointers.

Checked C is an ongoing project, with code freely available
on the Internet at https://github.com/Microsoft/checkedc.
We are actively working to strengthen our static checker
to endorse more safe coding idioms, and to improve run-
time check elimination. We are also actively improving our
porting tool. In the longer term we plan to support temporal
safety checking.

Acknowledgments

We would like to thank Jijoong Moon and Wonsub Kim from
Samsung for their assistance with the implementation of the
Checked C compiler and the manual conversion of several
benchmarks.

References

[1] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005.
Control-flow Integrity. In Proceedings of the 12th ACM Conference on
Computer and Communications Security (CCS °05). ACM, New York,
NY, USA, 340-353. https://doi.org/10.1145/1102120.1102165

[2] AbsOmt. 2016. Astrée: Fast and sound runtime error analysis. http:

/Iwww.absint.com/astree/index.htm. (2016). Accessed May 12, 2016.

Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and

Miguel Castro. 2008. Preventing Memory Error Exploits with WIT. In

Proceedings of the 2008 IEEE Symposium on Security and Privacy (SP

’08). IEEE Computer Society, Washington, DC, USA, 263-277. https:

//doi.org/10.1109/SP.2008.30

[4] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. 1994. Efficient
Detection of All Pointer and Array Access Errors. SIGPLAN Not. 29, 6
(June 1994), 290-301. https://doi.org/10.1145/773473.178446

[5] Arash Baratloo, Navjot Singh, and Timothy Tsai. 2000. Transparent
Run-time Defense Against Stack Smashing Attacks. In Proceedings of
the Annual Conference on USENIX Annual Technical Conference (ATEC
’00). USENIX Association, Berkeley, CA, USA, 21-21. http://dl.acm.
org/citation.cfm?id=1267724.1267745

[6] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth
Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson
Engler. 2010. A Few Billion Lines of Code Later: Using Static Analysis
to Find Bugs in the Real World. Commun. ACM 53, 2 (Feb. 2010), 66-75.
https://doi.org/10.1145/1646353.1646374

[7] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. 2003.
A Static Analyzer for Large Safety-critical Software. SIGPLAN Not. 38,
5 (May 2003), 196-207. https://doi.org/10.1145/780822.781153

[8] Hans-Juergen Boehm and Mark Weiser. 1988. Garbage Collection in
an Uncooperative Environment. Softw. Pract. Exper. 18, 9 (Sept. 1988),
807-820.

[9] Derek Bruening and Qin Zhao. 2011. Practical Memory Checking with
Dr. Memory. In Proceedings of the 9th Annual IEEE/ACM International
Symposium on Code Generation and Optimization (CGO ’11). IEEE
Computer Society, Washington, DC, USA, 213-223. http://dl.acm.org/
citation.cfm?id=2190025.2190067

[10] William R. Bush, Jonathan D. Pincus, and David J. Sielaff. 2000. A

Static Analyzer for Finding Dynamic Programming Errors. Softw.
Pract. Exper. 30, 7 (June 2000), 775-802. https://doi.org/10.1002/(SICI)
1097-024X(200006)30:7<775::AID-SPE309>3.0.CO;2-H

—
w
—

[11] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K.
Iyer. 2005. Non-control-data Attacks Are Realistic Threats. In Pro-
ceedings of the 14th Conference on USENIX Security Symposium - Vol-
ume 14 (SSYM’05). USENIX Association, Berkeley, CA, USA, 12-12.
http://dl.acm.org/citation.cfm?id=1251398.1251410

[12] Tzi-cker Chiueh and Fu-Hau Hsu. 2001. RAD: A Compile-Time Solu-
tion to Buffer Overflow Attacks. In Proceedings of the The 21st Interna-
tional Conference on Distributed Computing Systems (ICDCS ’01). IEEE
Computer Society, Washington, DC, USA. http://dl.acm.org/citation.
cfm?id=876878.879316

[13] Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and
George C. Necula. 2007. Dependent Types for Low-Level Program-
ming. In Proceedings of European Symposium on Programming (ESOP
’07) (Lecture Notes in Computer Science), Vol. 4421. Springer-Verlag,
Heidelberg, 520-535.

[14] Intel Corporation. 2016. Intel Inspector. https://software.intel.com/
en-us/intel-inspector-xe. (2016). Accessed May 6, 2016.

[15] Crispin Cowan, Calton Pu, Dave Maiere, Heather Hintony, Jonathan
Walpole, Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and
Qian Zhang. 1998. StackGuard: Automatic Adaptive Detection and
Prevention of Buffer-overflow Attacks. In Proceedings of the 7th Con-
ference on USENIX Security Symposium - Volume 7 (SSYM’98). USENIX
Association, Berkeley, CA, USA, 5-5. http://dl.acm.org/citation.cfm?
id=1267549.1267554

[16] David Delmas and Jean Souyris. 2007. Astrée: From Research to In-
dustry. In Proceedings of the 14th International Conference on Static
Analysis (SAS’07). Springer-Verlag, Berlin, Heidelberg, 437-451. http:
//dl.acm.org/citation.cfm?id=2391451.2391480

[17] dlang.org. 2016. D. http://dlang.org/. (2016). Accessed May 13, 2016.

[18] Dr. Memory. 2016. Dr. Memory: Memory Debugger for Windows,
Linux, and Mac. http://www.drmemory.org/. (2016). Accessed May 6,
2016.

[19] Gregory J. Duck and Roland H. C. Yap. 2016. Heap Bounds Protection
with Low Fat Pointers. In Proceedings of the 25th International Confer-
ence on Compiler Construction (CC 2016). ACM, New York, NY, USA,
132-142. https://doi.org/10.1145/2892208.2892212

[20] Par Emanuelsson and Ulf Nilsson. 2008. A Comparative Study of
Industrial Static Analysis Tools. Electron. Notes Theor. Comput. Sci. 217
(July 2008), 5-21. https://doi.org/10.1016/j.entcs.2008.06.039

[21] golang.org. 2016. The Go Programming Language. https://golang.org/.
(2016). Accessed May 13, 2016.

[22] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling
Wang, and James Cheney. 2002. Region-based Memory Management
in Cyclone. In PLDL

[23] Brian Hackett, Manuvir Das, Daniel Wang, and Zhe Yang. 2006. Mod-
ular Checking for Buffer Overflows in the Large. In ICSE.

[24] Niranjan Hasabnis, Ashish Misra, and R. Sekar. 2012. Light-weight
Bounds Checking. In Proceedings of the Tenth International Symposium
on Code Generation and Optimization (CGO ’12). ACM, New York, NY,
USA, 135-144. https://doi.org/10.1145/2259016.2259034

[25] Reed Hastings and Bob Joyce. 1992. Purify: Fast detection of memory
leaks and access errors. In Proceedings of the Winter 1992 USENIX
Conference. USENIX Association, Berkeley, CA, USA, 125-138.

[26] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James
Cheney, and Yanling Wang. 2002. Cyclone: A Safe Dialect of C. In
USENIX Annual Technical Conference. USENIX, Monterey, CA, 275-
288.

[27] Richard W. M. Jones and Paul H. J. Kelly. 1997. Backwards-compatible
bounds checking for arrays and pointers in C programs. In Third
International Workshop on Automated Debugging (Linkoping Electronic
Conference Proceedings), Miriam Kamkar and D. Byers (Eds.). Linkoping
University Electronic Press. "http://www.ep.liu.se/ea/cis/1997/009/".

[28] Samuel C. Kendall. 1983. Bcc: runtime checking for C programs. In
USENIX Toronto 1983 Summer Conference. USENIX Association, Berke-
ley, CA, USA.

https://github.com/Microsoft/checkedc
https://doi.org/10.1145/1102120.1102165
http://www.absint.com/astree/index.htm
http://www.absint.com/astree/index.htm
https://doi.org/10.1109/SP.2008.30
https://doi.org/10.1109/SP.2008.30
https://doi.org/10.1145/773473.178446
http://dl.acm.org/citation.cfm?id=1267724.1267745
http://dl.acm.org/citation.cfm?id=1267724.1267745
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/780822.781153
http://dl.acm.org/citation.cfm?id=2190025.2190067
http://dl.acm.org/citation.cfm?id=2190025.2190067
https://doi.org/10.1002/(SICI)1097-024X(200006)30:7<775::AID-SPE309>3.0.CO;2-H
https://doi.org/10.1002/(SICI)1097-024X(200006)30:7<775::AID-SPE309>3.0.CO;2-H
http://dl.acm.org/citation.cfm?id=1251398.1251410
http://dl.acm.org/citation.cfm?id=876878.879316
http://dl.acm.org/citation.cfm?id=876878.879316
https://software.intel.com/en-us/intel-inspector-xe
https://software.intel.com/en-us/intel-inspector-xe
http://dl.acm.org/citation.cfm?id=1267549.1267554
http://dl.acm.org/citation.cfm?id=1267549.1267554
http://dl.acm.org/citation.cfm?id=2391451.2391480
http://dl.acm.org/citation.cfm?id=2391451.2391480
http://dlang.org/
http://www.drmemory.org/
https://doi.org/10.1145/2892208.2892212
https://doi.org/10.1016/j.entcs.2008.06.039
https://golang.org/
https://doi.org/10.1145/2259016.2259034
"http://www.ep.liu.se/ea/cis/1997/009/"

[29]

(30]

(31]

(32]

[33

—

(34]

(35]

(36]

(37]

(38]

(39

—

(40

—

[41]

[42

—

[43]

Andrew Ruef, Archibald Samuel Elliott, lan Sweet, Michael Hicks, and David Tarditi

Mathworks. 2016. Polyspace Code Prover: prove the absence of
run-time errors in software. http://www.mathworks.com/products/
polyspace-code-prover/index.html. (2016). Accessed May 12, 2016.
Jacob Matthews and Robert Bruce Findler. 2007. Operational Semantics
for Multi-language Programs. In POPL.

MicroFocus. 2016. DevPartner. http://www.borland.com/en-GB/
Products/Software-Testing/Automated-Testing/Devpartner-Studio.
(2016). Accessed May 6, 2016.

Microsoft Corporation. 2016. C# Programming Guide. https://msdn.
microsoft.com/en-us/library/67ef8sbd.aspx. (2016). Accessed May 13,
2016.

Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. 2009. SoftBound: Highly Compatible and Complete Spatial
Memory Safety for C. In Proceedings of the 30th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI "09).
ACM, New York, NY, USA, 245-258. https://doi.org/10.1145/1542476.
1542504

George C Necula, Jeremy Condit, Matthew Harren, Scott McPeak,
and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy
software. ACM Transactions on Programming Languages and Systems
(TOPLAS) 27, 3 (2005), 477-526.

Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework
for Heavyweight Dynamic Binary Instrumentation. In Proceedings of
the 28th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI *07). ACM, New York, NY, USA, 89-100.
https://doi.org/10.1145/1250734.1250746

NVDB [n. d.]. NIST vulnerability database. https://nvd.nist.gov. ([n.
d.]). Accessed May 17, 2017.

Yutaka Oiwa. 2009. Implementation of the Memory-safe Full ANSI-
C Compiler. In Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI "09). ACM,
New York, NY, USA, 259-269. https://doi.org/10.1145/1542476.1542505
Oracle Corporation. 2016. Oracle Solaris Studio. http://www.oracle.
com/technetwork/server-storage/solarisstudio/overview/index.html.
(2016). Accessed May 6, 2016.

Parasoft. 2016. Memory Error Detection. https://www.parasoft.com/
capability/memory-error-detection/. (2016). Accessed May 6, 2016.
Harish Patil and Charles Fischer. 1997. Low-cost, Concurrent Checking
of Pointer and Array Accesses in C Programs. Software: Practice &
Experience 27, 1 (Jan. 1997), 87-110.

Anne Rogers, Martin C. Carlisle, John H. Reppy, and Laurie J. Hendren.
1995. Supporting Dynamic Data Structures on Distributed-memory
Machines. ACM Trans. Program. Lang. Syst. 17, 2 (March 1995), 233-263.
https://doi.org/10.1145/201059.201065

Rust-lang.org. 2016. Rust Documentation. https://www.rust-lang.org/
documentation.html. (2016). Accessed May 13, 2016.

Olatunji Ruwase and Monica S. Lam. 2004. A Practical Dynamic
Buffer Overflow Detector. In Proceedings of the 11th Annual Net-
work and Distributed System Security Symposium. Internet Society,
Reston, VA, USA, 159-169. http://www.internetsociety.org/doc/

[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]

[52]
[53]

[54]

[55]

[56]

[57]

practical-dynamic-buffer-overflow-detector.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitry Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker.
In Proceedings of the 2012 USENIX Conference on Annual Technical
Conference (USENIX ATC’12). USENIX Association, Berkeley, CA, USA,
28-28. http://dl.acm.org/citation.cfm?id=2342821.2342849

Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra
Modadugu, and Dan Boneh. 2004. On the Effectiveness of Address-
space Randomization. In CCS. WX protection is discussed in Section
1.1.

Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional
Languages.

Joseph L. Steffen. 1992. Adding Run-time Checking to the Portable

C Compiler. Softw. Pract. Exper. 22, 4 (April 1992), 305-316. https:
//doi.org/10.1002/spe.4380220403

Nikhil Swamy, Michael Hicks, Greg Morrisett, Dan Grossman, and
Trevor Jim. 2006. Safe Manual Memory Management in Cyclone. Sci.
of Comp. Programming 62, 2 (Oct. 2006), 122-144. Special issue on
memory management. Expands ISMM conference paper of the same
name.

Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK:
Eternal War in Memory. In Proceedings of the 2013 IEEE Symposium
on Security and Privacy (SP °13). IEEE Computer Society, Washington,
DC, USA, 48-62. https://doi.org/10.1109/SP.2013.13

PaX Team. 2001. http://pax.grsecurity.net/docs/aslr.txt. (2001).

Inc. Unicom Systems. 2016. PurifyPlus. http://unicomsi.com/products/
purifyplus/. (2016). Accessed May 6, 2016.

Valgrind. 2016. Valgrind. http://valgrind.org/. (2016). Accessed May 6,
2016.

Philip Wadler and Robert Bruce Findler. 2009. Well-Typed Programs
Can’T Be Blamed. In ESOP.

Robert Wahbe, Steven Lucco, Thoma E. Anderson, and Susan L. Gra-
ham. 1993. Efficient Software-based Fault Isolation. In Proceedings
of the Fourteenth ACM Symposium on Operating Systems Principles
(SOSP ’93). ACM, New York, NY, USA, 203-216. https://doi.org/10.
1145/168619.168635

Wikipedia. 2016. Address space layout randomization. https://en.
wikipedia.org/wiki/Address_space_layout_randomization. (2016). Ac-
cessed April 25, 2016.

Yves Younan, Pieter Philippaerts, Lorenzo Cavallaro, R. Sekar, Frank
Piessens, and Wouter Joosen. 2010. PAriCheck: An Efficient Pointer
Arithmetic Checker for C Programs. In Proceedings of the 5th ACM
Symposium on Information, Computer and Communications Security
(ASIACCS ’10). ACM, New York, NY, USA, 145-156. https://doi.org/10.
1145/1755688.1755707

Feng Zhou, Jeremy Condit, Zachary Anderson, Ilya Bagrak, Rob Ennals,
Matthew Harren, George Necula, and Eric Brewer. 2006. SafeDrive:
Safe and Recoverable Extensions Using Language-Based Techniques.
In 7th Symposium on Operating System Design and Implementation
(OSDr'o6). USENIX Association, Seattle, Washington.

http://www.mathworks.com/products/polyspace-code-prover/index.html
http://www.mathworks.com/products/polyspace-code-prover/index.html
http://www.borland.com/en-GB/Products/Software-Testing/Automated-Testing/Devpartner-Studio
http://www.borland.com/en-GB/Products/Software-Testing/Automated-Testing/Devpartner-Studio
https://msdn.microsoft.com/en-us/library/67ef8sbd.aspx
https://msdn.microsoft.com/en-us/library/67ef8sbd.aspx
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/1250734.1250746
https://nvd.nist.gov
https://doi.org/10.1145/1542476.1542505
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
https://www.parasoft.com/capability/memory-error-detection/
https://www.parasoft.com/capability/memory-error-detection/
https://doi.org/10.1145/201059.201065
https://www.rust-lang.org/documentation.html
https://www.rust-lang.org/documentation.html
http://www.internetsociety.org/doc/practical-dynamic-buffer-overflow-detector
http://www.internetsociety.org/doc/practical-dynamic-buffer-overflow-detector
http://dl.acm.org/citation.cfm?id=2342821.2342849
https://doi.org/10.1002/spe.4380220403
https://doi.org/10.1002/spe.4380220403
https://doi.org/10.1109/SP.2013.13
http://pax.grsecurity.net/docs/aslr.txt
http://unicomsi.com/products/purifyplus/
http://unicomsi.com/products/purifyplus/
http://valgrind.org/
https://doi.org/10.1145/168619.168635
https://doi.org/10.1145/168619.168635
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://doi.org/10.1145/1755688.1755707
https://doi.org/10.1145/1755688.1755707

Checked C for Safety, Gradually

Heap H e Z—-7Zxrt

Result r == e|Null|Bounds
Contexts E _|letx =Eine
E+e|n+E

*E|*E=e|*n=E

|
| &E—f|(r)E
|
| unchecked E

Figure 9. Semantics Definitions
A Full operational semantics

Figure 10 defines the full operational semantics for CORECHKC.
The syntax of the language is given in Figure 6 (5), auxiliary
definitions are given in Figure 9, and a discussion of the main
judgment H;e —™ H,;r is given in Section 3.2. Here we
carefully describe the rules with prefix E-, which define the
core computation semantics H; ey ~» H’; e;. The semantics
is implicitly parameterized by struct map D.

Rule E-Binor produces an integer ns that is the sum of
arguments n; and n,. When n; is a non-zero checked pointer
to an array and n; is an int, result ns’s type annotation is
annotated as a pointer to an array with its bounds suitably
updated.® Otherwise, for non checked array pointers, n3’s
type is just the same as n;’s type. (Checked array pointers
whose value is zero are handled below.)

Rules E-Derer and E-Assion check the bounds of checked
array pointers: the length [must be positive for the derefer-
ence to be legal. The rule permits the program to proceed

for non-checked or non-array pointers (but the type system
will forbid them).

Rule E-AmpEr takes the address of a struct field, according
to the type annotation on the pointer, as long the pointer is
not zero or not checked.

Rule E-Matroc allocates a checked pointer by finding a
string of free heap locations and initializing each to 0, an-
notated to the appropriate type. Here, types(D, w) returns n
types, where these are the types of the corresponding mem-
ory words; e.g., if w is a struct then these are the types of
its fields (looked up in D), or if w is an array 7 of length k,
then we will get back k 7’s.

Rule E-LET uses a substitution semantics for local variables;
notation e[x +— n”] means that all occurrences of x in e
should be replaced with n”.

Rule E-UncHEckED returns the result of an unchecked
block.

Rules with prefix X- describe failures due to bounds checks
and null checks (on checked pointers). These are analogues
to the E-AssigN, E-DEReF, E-Binop, and E-AMPER cases. The
first two rules indicate a bounds violation for size-zero array
pointers. The next two indicate an attempt to dereference a
null pointer. The last two indicate an attempt to construct a

3Here, | — n, is natural number arithmetic: if ny > I then [— ny = 0.
checked pointer from a null pointer via field access or pointer

arithmetic.

Andrew Ruef, Archibald Samuel Elliott, lan Sweet, Michael Hicks, and David Tarditi

E-Binop H;nl' +n ~» H;n where n3 = n; + ny
r=ptré(arraylz) A ni#0 =
13 = ptré(array !’ r) where I’ =1 —n,
71 # ptré(arraylz) = 13=1

E-CasT H; (r)nf/ ~ H;n*
E-DEREF H;#n® ~» H;n where ni' = H(n)

T =ptré(arraylz’) = [>0
E-ASSIGN H;#n" =n]' ~ H’;n} where H(n) defined

T =ptré(arraylz’) = [>0

H =H[n n}']
E-AMPER H;&n"—f; ~ H;n) where 7 = ptr™ struct T

D(T) =nf1;..omfrfor1 <i<k

m#cVnt0 = n0=n+i/\1'0=ptrm/ri

E-MaLroc H;malloc@w ~» H’, Fl’trcw where
sizeof (w) = k and n,...n; are consecutive
ny # 0 and H(ny)...H(ny) are undefined
1, ..oy T = types(D, w)
H’ = H[n; — 07]...[ng 07]
E-LET H;letx = n"ine ~» H;e[x n"]
E-UNCHECKED H;unchecked n® ~ H;n"
X-DERerOOB H;*n* ~» H;Bounds where 7 = ptré(array 0 7;)
X-AssiGNOOB H;#n" =n]' ~» H;Bounds where 7 = ptré(array 0 7;)
X-DEREFNULL H;*0" ~» H;Null where 7 = ptréo
X-AssIGNNULL H;*0" = nf' ~ H;Null where 7 = ptr€(array [r;)
X-AMPERNULL H;&0"—=f; ~» H;Null where 7 = ptréstruct T
X-BINoPNULL H;x0" =n” ~» H;Null where 7 = ptré(array [7;)
C-Exp mode(_) = ¢
e = E[eo] m = mode(E) Vm = u mode(unchecked E) = u
H;ey~> H';e} e’ = E[e}] mode(dlczt x =) Eine) =
o mode(E + e
Hie =7 He mode(n + E) =
C-HALT mode(&E— f) =
e = E[eg] m = mode(E)Vm=u mode((t)E) =
H;ey ~» H';r where r = Null or r = Bounds mode(+E) =
prea— mode(+E =e) =
Hie =" Hyr mode(xn=E) = mode(E)

Figure 10. Semantics (complete)

Checked C for Safety, Gradually

B Graphed Results of Modifications and
Overheads

A summary of the results of code changes is shown in Fig-
ure 11. A summary of the overheads these Checked C and
these changes introduce is shown in Figure 12.

C Vsftpd porting experience

Vsftpd (“Very secure FTP daemon”) is a modern FTP server
designed with security in mind. After performing an initial

port of vsftpd using our porting tool, we spent a few more
days manually porting vsftpd. We were able to make a sub-

stantial amount of the code checked, and we estimate that
quite a bit more could be made so. Here we describe some of
our experience.

C.1 Checked strings

Vsftpd defines its own internal datastructure for managing
strings that aims to avoid some of the well-known problems
with zero termination (e.g,. due to use of functions like strcpy
)- Our ported version of this data structure is the following:

struct mystr

{
_Nt_array_ptr<char> p_buf : count(alloc_b-1);
unsigned int len; /* len <= alloc_bytes */
unsigned int alloc_b;

3

The p_buf field contains the string data, totaling alloc_b.
The code intends for p_buf to always be NUL terminated,
but the NUL may (also) appear before the end of the buffer,
at location len. When we ported this code to Checked C,
we ended up ensuring location s->p_buf[s->alloc_b-1] also
always contains a NUL. Here are some relevant prototypes
of functions that operate on struct mystr objects:
_Nt_array_ptr<const char> str_getbuf (_Ptr<const
struct mystr> p_str);
_Nt_array_ptr<const char> str_strdup(_Ptr<const
struct mystr> p_str);
void
private_str_append_memchunk (_Ptr<struct mystr>
p_str, _Array_ptr<const char> p_src : count
(len), unsigned int len);
void str_empty (_Ptr<struct mystr> p_str);

The first function returns the p_buf field; the second makes a
copy of p_buf (up to len) and returns that; the third appends
a buffer to the existing string, starting at len, allocating more
space if need be; the fourth empties the string (writing a NUL

at position 0). This third function presented a problem for
the current compiler: When reallocating to make more space,
we need a way to atomically update p_buf and alloc_b, but
at the moment this is not implemented by the compiler (so
required an unchecked block).

C.2 System functions

Vsftpd makes heavy use of I/O libraries, managing sock-
ets, network communication, file reading/writing, and more.
It isolates the relevant functions in a single file, sysutil.c.
Much of the code in this file can be made checked, but those
bits that directly interact with low-level resources cannot be.
E.g., calls to mmap, read, write, etc. require sending/receiv-
ing memory buffers, which we may cast to/from checked
pointers when appropriate. In most cases, we could provide
checked types for these functions. Here are some examples:

_Nt_array_ptr<char> vsf_sysutil_getcwd(
_Array_ptr<char> p_dest count (
buf_size), const unsigned int buf_size)

count (buf_size);

int vsf_sysutil_read_loop(const int fd,

byte_count(
size), unsigned int size);

_Nt_array_ptr<const char>
vsf_sysutil_double_to_str (double
the_double);

_Array_ptr<const unsigned char>
vsf_sysutil_sockaddr_ipv6_v4 (const _Ptr
<struct vsf_sysutil_sockaddr>
p_sockaddr) count (4);

_Array_ptr<void> p_buf

The first is a wrapper around a call to get the current work-
ing directory, sotring the result in p_dest. The second reads
size bytes into p_buf from fd. The third coverts a double to
a (statically allocated) string. The fourth converts a generic
address object into a (4 byte) IPv4 address. For this last func-
tion we were able to provide a more precise type, since we
could specifically indicate the size of the returned buffer.

C.3 Summary

In total, we ported 24 of the 39 files in vsftpd to be fully
checked. This represents 6725 lines of code that are totally
checked, compared to overall 16546 lines of code in the entire
project. Additionally, checked types are used throughout the
code, even in files which are not checked. Throughout the
project, we re-wrote 2715 declarations of variables, parame-
ters, and structure field members to use checked types.

Benchmark

Benchmark

Andrew Ruef, Archibald Samuel Elliott, lan Sweet, Michael Hicks, and David Tarditi

17.5%]: bh (80.1%); bh

bcort vcort | vort [
em3d : emsd NN SE
heaitn [heatn [heatn [
perimeter _ perimeter _ perimeter - Suite
poer N pover N poer [I ovcen
—y veass [veasd I s
I ; o o [
o I] o [
0% 10% 20% 30% 0% 20% 40% 60% 80% 100% 0% 10% 20% 30%
Lines Modified (%) Easy Modifications (%) Lines Unchecked (%)
Figure 11. Summary of Code Changes
bh i bh . bh —+7.4%
bisort I bisort Tl bisort Tl
em3d 1 em3d — em3d o
health 4! health — health —
mst [mst — mst —
perimeter I perimeter Tl perimeter i Suite
power [power — power — —— Olden
treadd —t treadd treadd —l — Ptrdist
tsp [tsp _ tsp -
anagram —l anagram 1 anagram —I
ft s ft] ft T
ks — ks S ks e
yacr2 _— yacr2 _ yacr2 —_—
-20% 0% 4200 +40% +60% 25% 0% +25% +50% +75% 0% 0% 4200 +40% +60%
Runtime Slowdown (+%) Compile Time Slowdown (+%) Executable Size Change (+%)

Figure 12. Summary of Modification Overheads

	Abstract
	1 Introduction
	2 Checked C
	2.1 Basics
	2.2 Simple pointers
	2.3 Arrays
	2.4 NUL-terminated Arrays
	2.5 Checked and Unchecked Regions
	2.6 Restrictions and Limitations

	3 Formalism: CoreChkC
	3.1 Syntax
	3.2 Semantics
	3.3 Typing
	3.4 Metatheory

	4 Implementation
	4.1 Overview
	4.2 Checking Bounds
	4.3 Run-time Checks

	5 Automatic Porting
	5.1 Conversion tool design and overview
	5.2 Constraint logic and solving

	6 Empirical Evaluation
	6.1 Compiler evaluation
	6.2 Porting Tool Evaluation
	6.3 Additional Porting Experience

	7 Related work
	8 Summary
	Acknowledgments
	References
	A Full operational semantics
	B Graphed Results of Modifications and Overheads
	C Vsftpd porting experience
	C.1 Checked strings
	C.2 System functions
	C.3 Summary

