
A Concurrency System for Idris & Erlang

Archibald Samuel Elliott
School of Computer Science

University of St Andrews
St Andrews, Scotland

ashe@st-andrews.ac.uk

Abstract

Concurrent programming is notoriously difficult, due to needing to
reason not only about the sequential progress of any algorithms, but
also about how information moves between concurrent agents.

What if programmers were able to reason about their concurrent pro-
grams and statically verify both sequential and concurrent guaran-
tees about those programs’ behaviour? That would likely reduce the
number of bugs and defects in concurrent systems.

I propose a system combining dependent types, in the form of the
Idris programming language, and the Actor model, in the form of
Erlang and its runtime system, to create a system which allows
me to do exactly this. By expressing these concurrent programs and
properties in Idris, and by being able to compile Idris programs to
Erlang, I can produce statically verified concurrent programs.

Given that these programs are generated for the Erlang runtime
system, I also produce verified, flexible Idris APIs for Erlang/OTP
behaviours.

What’s more, with this description of the Idris code generation in-
terface, it is now much easier to write code generators for the Idris

compiler, which will bring dependently-typed programs to even more
platforms and situations. I, for one, welcome our new dependently-
typed supervisors.

1. Idris to Erlang Compiler

My compiler uses the existing Idris code generation system.
There are three possible Idris intermediate representations
that I could generate code from: a high-level IR with lambdas
and laziness, a defunctionalised IR with only fully-applied
functions, and an applicative-normal form IR.

In my case, we used the defunctionalised IR to generate Er-
lang source code from, according to the following translation,
E J〈expression〉K.

V J〈variable〉K turns IR variables into valid Erlang vari-
able names; C J〈name〉 # 〈expression〉*K creates constructors;
N J〈name〉K turns IR names into valid Erlang Atoms;
L J〈constant〉K turns IR constants into Erlang expressions; and
O J〈operation〉 # 〈expression〉*K turns primitive operators into
their Erlang equivalent.

E J〈variable〉K ⇒ V J〈variable〉K

E J〈name〉(〈expression〉*)K ⇒ C J〈name〉 # 〈expression〉*K when 〈name〉 is a Constructor
⇒ N J〈name〉K(E

q
〈expression〉0

y
, · · ·, E

q
〈expression〉n−1

y
)

otherwise

E
q

let 〈name〉 := 〈expression〉0 in 〈expression〉1
y
⇒ V Jglobal〈name〉K = begin E

q
〈expression〉0

y
end,

E
q
〈expression〉1

y

E J update 〈name〉 := 〈expression〉K ⇒ E J〈expression〉K

E J[〈expression〉]nK ⇒ element(n+2, E J〈expression〉K)

E J new 〈name〉(〈expression〉*)K ⇒ C J〈name〉 # 〈expression〉*K

E J case 〈expression〉 of 〈alternative〉* end K ⇒ case E J〈expression〉K of
A J〈alternative〉0K;
· · ·;
A

q
〈alternative〉n−1

y

end

E J chkcase 〈expression〉 of 〈alternative〉* end K ⇒ E J case 〈expression〉 of 〈alternative〉* end K

E J〈 constant 〉K ⇒ L J〈constant〉K

E
q

foreign 〈fdesc〉0〈fdesc〉1(〈farg〉*)
y
⇒ 〈fdesc〉1(E

q
〈expression〉2

y
, · · ·, E

q
〈expression〉n+1

y
)

E J operator 〈operator〉(〈expression〉*)K ⇒ O J〈operator〉 # 〈expression〉*K

E J nothing K ⇒ ‘undefined’

E J error 〈string〉K ⇒ erlang:error(〈string〉)

A J match 〈name〉0(〈name〉*)→ 〈expression〉K ⇒ C J〈name〉0 # global 〈name〉1 · · · global 〈name〉nK ->
E J〈expression〉K

A J〈constant〉 → 〈expression〉K ⇒ L J〈constant〉K -> E J〈expression〉K

A J default → 〈expression〉K ⇒ _ ->E J〈expression〉K

Foreign Calls
In Idris, the type of IO a is in fact parameterised by the types
that the foreign function interface uses. So for instance, IO a

is the type of computations that use C-like types in their for-
eign functions.
Erlang doesn’t have a type system like C’s, so instead we
defined our new computation type, EIO a which is paramet-
erised by the types that Erlang uses, so we can make foreign
calls to Erlang code.

2. Concurrency in Idris

Of course, our Idris to Erlang compiler is uninteresting un-
less we can use it to write concurrent programs.
The system I settled on implements the Actor model
— Erlang’s underlying concurrency model — as a type
Process l a, where l is the type of messages that process
can receive (something I like to refer to as the language of a
process), and m is the type of what the computation creates.
The type of m is in fact a Type* so that we can use Idris’
Uniqueness Types to provide guarantees about protocol pro-
gress.

We can then embed important details about how spawning,
sending and receiving work into the types of the functions
that do so, for instance:
1 -- The Process Type, from above

data Process : Type → Type∗ → Type

-- A reference to a process, as used for messaging.
5 -- This embeds the process’ language in its type.

data ProcRef : Type → Type

-- Spawn gives us a reference to the spawned process,
-- indexed by the correct language.

10 spawn : Process l’ a → Process l (ProcRef l’)

-- Receive returns us a value with a type that matches
-- the process’ language.
receive : Process l l

15
-- Send can only send messages of the correct type
send : ProcRef l’ → l’ → Process l ()

For Instance, this program will only run concurrently (it uses
some basic constructs on top of Process to provide RPC func-
tionality):
1 module Main

import ErlPrelude
import Erlang.Process

5 import Erlang.RPC

-- This is the handler in the RPC process.
-- ‘i‘ is the current count,
-- ‘Nothing‘ will read the current count,

10 -- ‘Just x‘ will add ‘x‘ to the count and return the new count,
-- The returned pair contains the reply and the new count
counter_rpc : Int → Maybe Int → Process (Maybe Int) (Int,Int)
counter_rpc i Nothing = return (i,i)
counter_rpc i (Just x) = return (i+x,i+x)

15
test_proc : Process Int ()
test_proc = do counter ← spawn_rpc counter_rpc 0

x ← rpc counter (Just 3)
lift ◦ putStrLn $ "x (3) = " ++ (cast x)

20 y ← rpc counter (Nothing)
lift ◦ putStrLn $ "y (3) = " ++ (cast x)
return ()

main : EIO ()
25 main = run test_proc

3. Erlang Concurrency Patterns
Erlang/OTP contains several other higher-order actor pat-
terns which most programmers structure their applications
around. For instance, there are behaviours for general-
ised servers (gen_server), generalised finite state machines
(gen_fsm), and generalised event handlers (gen_event).
We can put types on these patterns, especially adding lan-
guages for these processes. In this way, we use dependent typ-

ing to allow for flexible but strong types about various parts
of the languages.
For instance, with a generalised server, there are two ways of
communicating with it. Firstly, there is a synchronous call,
which will receive a reply. Then there is also an asynchronous
cast, which will not receive a reply.
We can encode this inside a more advanced language type,
like so:
1 -- A Gen Server language

-- cl is the call type
-- (cl → Type) computes the reply type from the call value
-- the third type is the cast type

5 data GSL : (cl :Type) → (cl → Type) → Type → Type

-- Type of computations that can interact with a Gen Server
GSP : Type → Type

10 -- A Gen Server reference includes the language
data GSRef : (GSL _ _ _) → Type

-- Making a synchronous call to a Gen Server
call : {l :GSL cl cr ct} → GSRef l → (m :cl) → GSP (cr m)

15
-- Making an asynchronous cast to a Gen Server
cast : {l :GSL _ _ ct} → GSRef l → ct → GSP Unit

Conclusion

I have shown that Idris is an entirely adequate programming
language for concurrent programming. With the new Erlang

code generation system that I have built, we can now write
and run safe, flexible actor-based programs which conform to
statically proven guarantees.
I have built an Idris to Erlang compiler, which supports con-
current Idris code. Along the way I have documented exactly
how to produce a compiler and how my compiler works.
I have also devised a way to model the Actor model in Id-
ris’ dependent types in a lightweight way such that we can
run the resultant concurrent programs on Erlang, including
doing inter-process RPC.
I looked into a heavily dependently-typed model of the three
main Erlang/OTP behaviours, which I finished, but are not
executable.
I wanted to look into modelling other concurrency calculi in
Idris, but was unable to do so, and likewise I was unable to
devise a Hoare-like logic for Erlang and its runtime system.
I hope that the work in my dissertation paves the way for
future research into concurrent programming with Idris and
other dependently-typed programming languages.


