
Skel: A Streaming Process-based Skeleton
Library for Erlang

(Early Draft!)

Archibald Elliott1, Christopher Brown1, Marco Danelutto2, and Kevin
Hammond1

1 School of Computer Science, University of St Andrews, Scotland, UK.
2 Dept. Computer Science, University of Pisa, Pisa, Italy.

Emails: ashe@st-andrews.ac.uk, {chrisb, kh}@cs.st-andrews.ac.uk,
marcod@di.unipi.it

Abstract. With the increasing shift towards parallel programming, par-
allel programs are still notoriously difficult to implement. Indeed, par-
allelism is usually made even more difficult by programmers typically
using sequential or small-scale parallel programming techniques. Func-
tional languages such as Erlang are increasingly starting to dominate
the parallelism scene with their typical first-class light-weight parallelism
models.
In this paper we introduce a new process-based skeleton framework for
Erlang based on streaming models. In particular, we show a number of
core “primitive” skeletons that can be used as a basis of more complex
parallel systems. We give details of the skeletons, in Erlang, and in our
full paper we promise to show promising and scalable speedups on a
manycore machine on a number of examplars.

1 Introduction

The single-core processor, which has dominated for more than half a century is
now obsolete. Machines with dual-, quad- and even hexa-core CPUs are already
common place in desktop machines and CPUs with 50 cores as standard have
already been announced 3. There has been a seismic shift between sequential and
parallel hardware, but programming models have been very slow to keep pace.
Indeed, many programmers still use outdated sequential models for programming
parallel systems, where parallel concepts have effectively been bolted-on to the
language, rather than high-level parallel constructs being first-class. What is
needed is an effective solution to help programmers think parallel. In the context
of parallel programming, parallel design patterns represent a natural language
description of a recurring problem and of the associated solution techniques that
the parallel programmer may use to solve that problem.

3 Intel’s Many Integrated Core Family

511



An algorithmic skeleton, is a computational, abstract entity, typically de-
scribed by a concurrent activity graph, modelling and embedding a frequently
recurring parallelism exploitation pattern, provided to the application program-
mer as a new abstraction in the programming framework at hand; a parallel
application is therefore developed as a composition of skeletons, which may be
specialised by providing (suitably wrapped) sequential portions of code imple-
menting the business logic of the application.

In this paper we introduce skel: a process-based streaming skeleton library
for Erlang. skel aims to model the most common set of “primitive” skeletons
that are typically used to make up more complex systems.

In particular, the contributions of our paper are:

1. we describe a new parallel skeleton library for Erlang. To our knowledge, this
is the first time parallel skeletons have been exploited this way in Erlang;
and,

2. we demonstrate the effectiveness of our skeletons on a set of synthetic bench-
marks, therefore demonstrating the parallel capabilities of Erlang;

2 Erlang

Erlang is a strict, impure, functional programming language with support for
first-class concurrency. This concurrency model allows the programmer to be
explicit about processes and communication, but implicit about placement and
synchronisation. Erlang supports a lightweight threading model, where processes
model small units of computation (tasks) that are executed on a capability. The
scheduling of processes is handled automatically by the Erlang Virtual Machine,
which also provides basic load balancing mechanisms. Erlang typically has three
primitives for handling concurrency:

– spawn(), allowing new functions to execute in a lightweight Erlang process;
– !, allow messages to be explicitly sent from one Erlang process to another;

and,
– receive, to allow messages to be received in another process queue.

Furthermore, Erlang also supports fault tolerance, by allowing groups of pro-
cesses to be supervised, and new instances of processes can be spawned in the
case failure. Although Erlang supports concurrency, there has been little research
into how Erlang can be used to effectively support deterministic parallelism.

3 Skeletons in Erlang

The design of the skel library has been based upon the design of FastFlow [1], a
parallel programming framework for multi-core platforms written in C++, but
with significant changes to take advantage of features provided by the Erlang
language and VM.

2

512



3.1 Skeletons

So far we have only implemented seven core “primitive” skeletons so far, however
they can be combined to make more complex skeletons. They are:

Seq a skeleton to encapsulate an indivisible portion of sequential code.
Pipe the functional composition of multiple skeletons. In skel, these are im-

plicit.
Farm a skeleton that schedules inputs onto replicas of a pipeline, and then

collects the results back into a single stream.
Map a skeleton that can decompose each item, put each decomposed part

through its own replica of a pipeline, and then recompose the results back
into a single item again.

Reduce a skeleton that applies a treefold, in parallel, over each decomposed
item.

Feedback a skeleton that can send independent items back through a skeleton.
Ord a skeleton to restore order to a stream of items4.

The skeletons we have implemented here are a set of foundation skeletons,
encapsulating common functional patterns. By investigating foundational skele-
tons, we can explore the parallel capabilities of Erlang while providing a strong
framework that allows for more complex skeletons to be implemented in the
future.

Most of these skeletons need to have one or more skeletons nested inside them
to work correctly, for instance a Farm skeleton requires at least a single Seq
skeleton to be nested within it or there would be no point in having the Farm
skeleton in your pipeline. When more than one skeleton is specified to be nested,
those skeletons will be assembled into a pipeline that is nested inside the other
skeleton. The only two skeletons that cannot have other skeletons nested inside
them are Seq, which is designed to encapsulate sequential code, and Reduce,
which applies a binary function to each item.

The skel API that is presented to programmers is a single function:

skel:run(Pipeline , ItemSource ).

– Pipeline an ordered list of skeletons that each item on the stream is to be
processed through.

– ItemSource either a list of stream items, or is a module with functions that
can supply stream items.

The process will then receive a message in response with the contents
{sink_results, ResultItems} where ResultItems is a list of the results of
sending the items from ItemSource through Pipeline. In the code examples,
this is denoted by % -> {sink_results, ItemSource} (sink_results just tells
the receiver that this message contains the results from the sink).

4 The implementation of this skeleton is not described, though it is present for appli-
cations where the order of items is important.

3

513



{seq, Fun}

Fun

Tn · · · T1 T 0
n · · · T 0

1

Fig. 1. The Seq Skeleton

In the following schematics, circles should be read as explicit Erlang processes
– if they are white then they have some user-defined behaviour in them, as
specified by the identifier inside them, and if they are black they only have some
system-level logic happening in them. Rectangles with solid edges denote an
internal pipeline, and the outer dotted rectangle denotes which processes are
contained in that particular skeleton. Data messages travel along the lines with
arrows, though as mentioned, they are not explicit channel objects.

Pipe Pipe is the only skeleton that does not have any of its own processes, and
does not explicitly exist. The basic building block of our library is a pipeline, so
skeletons are defined in terms of pipelines with 1 or more stages. We then use
algorithms (termed “assembly algorithms”) to turn this skeleton declaration into
a system that can run computations on a stream of items. Our implementation
currently contains two assembly algorithms: a parallel one (the default) and
a sequential one. Functionally, both assemblers will give you exactly the same
results, however the assembled process structures (and hence the parallelism
degrees) are completely different.

The parallel assembly algorithm is one that maps over the list of skeleton
declarations, using the details in each declaration to create a list of what we
term a “maker functions”. We then do a right fold over this list, so that we start
each one in reverse pipeline order, starting with the process id of a sink (the
end of the pipeline). The “maker functions” take the process id of the receiving
part of the next skeleton, start up that skeleton’s requisite processes, and then
returns the process id of the receiving part of that skeleton, hence the fold right.

The sequential assembly algorithm makes each skeleton declaration into a
single function, then composes them together into an entirely sequential version
of the pipeline. On the face of it, this may not seem sensible, however it is useful
for benchmarks and for working out, at a functional level, what each skeleton
does. All future focus is on the parallel versions of each skeleton.

Seq Seq is the most basic of all the skeletons. It consists of a single process
that applies a function, Fun, to any data messages it receives, before sending
the results on to the next skeleton. Should that process receive an end-of-stream
message it will exit immediately. A schematic of this skeleton is shown in Figure
1, and an example of its operation can be seen in Figure 2.

4

514



skel:run([{seq , fun (X) -> X+1 end}],

[1,2,3,4,5,6]).

% -> {sink_results ,[2,3,4,5,6]}

Fig. 2. An example of the Seq Skeleton

Tn · · · T1 T 0
n · · · T 0

1

Pipe1

{farm, Pipe, M}

...

Pipe2

PipeM

Fig. 3. The Farm Skeleton

Farm In a Farm skeleton, an emitter forwards inputs into one of M replicas of
the pipeline, Pipe, which then forwards results onto a collector and then the
next skeleton. A schematic of this skeleton is shown in Figure 3, and an example
of its operation is shown in Figure 4.

The emitter process is very simple. When it receives a data message, it for-
wards that message on to any single one of the pipeline replicas. When it receives
an end-of-stream message, it forwards this message to every single one of the
pipeline replicas. At the moment the scheduling algorithm is round-robin, but
we expect to add other algorithms in the future.

The collector process is also simple. When it receives a data message (from
any of the pipeline replicas), it forwards the message onto the next skeleton. The
collector waits for M end-of-stream messages before exiting, to make sure that it
has received all messages from each of the pipeline replicas.

Map In a Map skeleton, each item is decomposed by the Decomp function into
a number, mi, of parts, then each of these is forwarded into one of mi replicas of
the pipeline, Pipe. After the pipes, each part is then forwarded to a recomposer,
which combines all the parts back into a single item using the Recomp function.
A schematic is shown in Figure 5, and an example of its operation is shown in
Figure 6.

The Decomp function is for disassembling a collection-like item into a list
of its constituent parts, and the Recomp function is for turning the list of con-
stituent parts back into a collection-like item. If you’re dealing with lists, you

5

515



skel:run([{farm , [{seq , fun(X)-> X+1 end}],

3}],

[1,2,3,4,5,6]).

% -> {sink_results ,[2,5,3,6,4,7]}

Fig. 4. An example of the Farm Skeleton

Tn · · · T1 T 0
n · · · T 0

1

{map, Pipe, Decomp, Recomp}

...

Pipe2

Pipem

Pipe1

Decomp Recomp

Decomp =̂ Ti ! [Ii,1 · · · Ii,m]

Recomp =̂ [I 0i,1 · · · I 0i,m] ! T 0
i

Fig. 5. The Map Skeleton

can just use an identity function, and helpfully Erlang has tuple_to_list/1

and list_to_tuple/1 if you’re moving around tuples, like we are in Figure 6.
The decompose process is less trivial than a normal emitter. It waits for items

and then splits them into many parts. After each data message is split, each part
is labelled with a unique tag that relates to the input item, the index of that
part in the collection of parts, and the total count of parts for that item (this
is the reason we have the stack in each data message). Each part is then sent
through a replica of the pipeline.

As we cannot make any assertions about the number of parts that the Decomp
function will produce, the decompose process also has the ability to start more
replicas of the pipeline if it does not have enough for all the parts of an input.

The recompose process is also quite complicated. It waits for each part, then
puts it into a store (keyed by item unique tag and part index), along with the
data about how many parts it has so far received, and how many it is expecting.
When it has received as many as it is expecting, it calls the Recomp function
with a list of the inputs that it has received (therefore preserving the order the
parts were in when they came out the Decomp function), which produces a single
item again, which it then forwards to the next skeleton. The process also stores
the highest number of parts that it has received for any input, in order to know
how many end-of-stream messages to wait for before exiting.

6

516



skel:run([{map , [{seq , fun(X)-> X+1 end}],

fun erlang:tuple_to_list /1,

fun erlang:list_to_tuple /1}],

[{1,2},{3,4}]).

% -> {sink_results ,[{2,3},{4,5}]}

Fig. 6. An example of the Farm Skeleton

Tn · · · T1 I 0n,(1···m) · · · I 01,(1···m)

Decomp

Decomp =̂ Ti ! [Ii,1 · · · Ii,m]

R =̂ Ii,j ! Ii,k ! I 0i,(j,k)

{reduce, R, Decomp}

R

R

R

R

R

R

R

Fig. 7. The Reduce Skeleton

Reduce The Reduce skeleton executes a parallel treefold over the decomposed
parts of each input. Inputs are first decomposed into several parts, and then
they’re submitted into a binary tree of reduce processes. The reduce processes
compute their result with both parts of the item that they receive, then forward
the result on to the next reduce process. A schematic is shown in Figure 7, and
an example of its operation is shown in Figure 8.

The decompose process waits for inputs, then splits them into mi parts.
After each data message is split, each part is labelled with a unique tag that
relates to the input item, and a number that indicates how many reduce steps
it will go through (this is calculated as dlog2(mi)e). The parts are distributed
to the correct level of the reduce process tree corresponding to mi parts. Two
parts are given to each reducer, and then any reducers still waiting for a part
are given a unit input. The unit input is a system-level message that would act
as the unit value for the computation (this is explained further, later). When
the decomposer receives an end-of-stream message, it forwards 2 end-of-stream
messages to each reducer at the widest level of the tree.

Again, we cannot make any assertions about the number of parts the Decomp

function produces, so process instantiation is dynamic.
The reduce processes wait for parts or unit values. For the first part (or unit

value) of an item that they get, they store it, and then wait for another. When
they receive the second part (or unit value), they use a fairly simple algorithm to

7

517



skel:run([{reduce , fun(X,Y) -> X + Y end ,

fun erlang:tuple_to_list /1}],

[{1,2,3,4,5,6},{7,8,9,10,11,12}]).

% -> {sink_results ,[21,57]}

Fig. 8. An example of the Reduce Skeleton

Tn · · · T1 T 0
n · · · T 0

1

Feedback

{feedback, Pipe, Feedback}

Pipe

Feedback =̂ T 0
i ! true | false

Fig. 9. The Feedback Skeleton

work out what to forward. If they received two unit values, they forward the unit
value. If they received a part and a unit value, they forward the part, and only if
they received two parts do they combine them using the reduce function, before
forwarding on the result of the computation. Before forwarding an input, the
reducer decrements the count of steps that the part has to go through. When
this count gets to zero, the reduce label on the data message is taken off, to
preserve the invariant that the label stack is the same on leaving a skeleton as
it is when it entered it. When a reducer receives two end-of-stream messages, it
forwards a single end-of-stream message to the next reducer.

Feedback The Feedback skeleton sends items through a pipeline, Pipe, and
then checks a predicate, Feedback, to find out whether it should send that input
through the pipeline again or forward it to the next skeleton. A schematic is
shown in Figure 9, and an example is shown in Figure 10.

The only complication in this skeleton comes in the race condition between an
end-of-stream message coming in, and items that are going through the feedback
loop. Because we cannot prioritise one “stream” over another in Erlang (which
would let us prioritise the feedback queue, and just stop receiving from the
previous skeleton), we instead maintain two counters of items in two parts of
the skeleton. The counters are stored in a separate process, due to the lack of
any shared state in Erlang, which also allows us to make any operations on
them atomic, and allows the receiver to subscribe to updates anyone makes to
the counters. The first counter keeps a count of items in the pipeline, and the
second keeps a count of items in the pipeline. Once an end-of-stream message is
received, the receiver process (the black circle in Figure 9) continues receiving,

8

518



skel:run([{feedback , [{seq , fun(X) -> X+1 end}],

fun(X) -> X < 5 end}],

[1,2,3,4,5,6,7,8,9,10]).

% -> {sink_results ,[5,6,7,8,9,10,11,5,5,5]}

Fig. 10. An example of the Feedback Skeleton

but also waits to be told when both counters get to zero. When both counters
reach zero, the end-of-stream message can be forwarded without fear of race
conditions.

4 Related Work

Since the nineties, the “skeletons” research community has been working on high-
level languages and methods for parallel programming [4, 5, 3, 6, 2, 9]. Skeleton
programming requires the programmer to write a program using well-defined
abstractions (called skeletons) derived from higher-order functions that can be
parameterized to execute problem-specific code. Skeletons do not expose to the
programmer the complexity of concurrent code, for example synchronization,
mutual exclusion and communication. They instead specify abstractly common
patterns of parallelism – typically in the form of parametric orchestration pat-
terns – which can be used as program building blocks, and can be composed or
nested like constructs of a programming language. A typical skeleton set includes
the pipeline, the task farm, map and reduction.

Early proposals of pattern-based parallel programming frameworks have been
mainly focused on distributed memory platforms, such as clusters of worksta-
tions and grids [13, 11]. All these skeleton frameworks provide several parallel
patterns covering mostly task and data parallelism. These patterns can usually
nested to model more complex parallelism exploitation patterns according to the
constraints imposed by the specific programming framework. Recently skeletons
gained renewed popularity with the arrival of multi-core platforms, the conse-
quent diffusion of parallel programming frameworks, and their adoption in some
programming frameworks, such as FastFlow [1], Intel Threading Building Block
(TBB) [10] and to a limited extent the Microsoft Task Parallel Library [12].
Google MapReduce [7] brings to the mainstream of out-of-core data processing
the map-reduce paradigm. The main features of these frameworks, as well as
many other experimental ones, are surveyed in [8].

9

519



5 Conclusions and Future Work

Acknowledgements

This work has been supported by the European Union Framework 7 grant IST-
2011-288570 “ParaPhrase: Parallel Patterns for Adaptive Heterogeneous Multi-
core Systems”, http://www.paraphrase-ict.eu.

References

1. M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati. Fastflow: High-level
and Efficient Streaming on Multi-core. In S. Pllana and F. Xhafa, editors, Pro-
gramming Multi-core and Many-core Computing Systems, Parallel and Distributed
Computing, chapter 13. Wiley, 2012.

2. B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3L: A Struc-
tured High Level Programming Language and its Structured Support. Concurrency
Practice and Experience, 7(3):225–255, May 1995.

3. G. H. Botorog and H. Kuchen. Skil: An Imperative Language with Algorithmic
Skeletons for Efficient Distributed Programming. In Proc. of the 5th International
Symposium on High Performance Distributed Computing (HPDC’96), pages 243–
252. IEEE Computer Society Press, 1996.

4. M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computations.
Research Monographs in Par. and Distrib. Computing. Pitman, 1989.

5. M. Cole. Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal
Parallel Programming. Parallel Computing, 30(3):389–406, 2004.

6. J. Darlington, Y. Guo, Y. Jing, and H. W. To. Skeletons for Structured Parallel
Composition. In Proc. of the 15th Symposium on Principles and Practice of Parallel
Programming, 1995.

7. J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. CACM, 51(1):107–113, 2008.

8. H. González-Vélez and M. Leyton. A Survey of Algorithmic Skeleton Frameworks:
High-Level Structured Parallel Programming Enablers. Software: Practice and
Experience, 40(12):1135–1160, 2010.

9. M. Hamdan, P. King, and G. Michaelson. A Scheme for Nesting Algorithmic
Skeletons. In K. Hammond, T. Davie, and C. Clack, editors, Proc. of the 10th
International Workshop on the Implementation of Functional Languages (IFL’98),
pages 195–211. Department of Computer Science, University College London, 1998.

10. Intel Corp. Threading Building Blocks, 2011.
11. H. Kuchen. A Skeleton Library. In B. Monien and R. Feldman, editors, Proc.

of 8th Euro-Par 2002 Parallel Processing, volume 2400 of LNCS, pages 620–629,
Paderborn, Germany, Aug. 2002. Springer.

12. D. Leijen and J. Hall. Optimize Managed Code for Multi-Core Machines. MSDN
Magazine, Oct. 2007.

13. M. Vanneschi. The programming model of ASSIST, an environment for parallel
and distributed portable applications. Parallel Computing, 28(12):1709–1732, Dec.
2002.

10

520


