
Erlang/OTP Meets Dependent Types
Archibald Samuel Elliott
Adviser: Edwin Brady
School of Computer Science

University of St Andrews
St Andrews, Scotland
sam@lenary.co.uk

1. Introduction

Concurrent programming is hard.

Combining the Actor model with a resilient runtime system
and well-understood generic concurrent patterns, ERLANG/OTP has
provided an environment that helps programs achieve reliablility other
systems can only aspire to.

It has done this in the distinct absence of any particularly ad-
vanced static verification system, despite how useful this could be for
producing correct programs. ERLANG programmers usually turn to dia-
lyzer, a static analysis tool that includes success-type checking, or
QuickCheck, a model checking tool, when looking to verify their pro-
grams.

What happens if I can use a type system to codify and verify how
actors in a program communicate with each other? Surely this would
make it easier to construct correct concurrent programs.

To do this, I require a way of expressing and verifying types which
is compatible with existing ERLANG codebases. The way I chose to do
this is to compile from a statically-typed programming language into
ERLANG.

IDRIS is a general-purpose dependently-typed pure functional
programming language. The usefulness of a dependently-typed lan-
guage is that types can be predicated on values, which allows more
flexibility than conventional type systems.

I have:

• produced a compiler that can turn dependently-typed IDRIS pro-
grams into ERLANG programs;

• devised a system for reasoning about concurrent IDRIS programs;
and

• constructed a system for reasoning about the generic concurrent
patterns that ERLANG/OTP provides.

2. Compiler

The IDRIS compiler can provide three different intermediate represent-
ations for code generation. All no longer include any dependent types.
They are, from highest- to lowest-level: an IR that includes lambdas
and laziness; a defunctionalised IR; and an A-normal form IR.

I chose the defunctionalised IR as it maps most closely to ER-
LANG syntax. IDRIS had a simple C foreign function system, which
was redesigned so it could be extended for any foreign language, in-
cluding ERLANG. Brady and I also designed a simple way of exporting
IDRIS functions to foreign languages. Both of these mean that IDRIS
can call any ERLANG function, and ERLANG can call any (exported)
IDRIS function.

Compiler and Foreign Call System Schematic

3. Verified Actor Systems

An actor is an isolated process with a mailbox of incoming messages,
and the ability to send messages to other actors, or to spawn other
actors. The fundamental concurrent interface to specify is to type the
messages the actor will receive.

An actor-based computation, denoted Actor l a, is paramet-
erised over two types: the type of messages it expects l, and the type
the computation will perform a. There are three operations on these
actors: receive, spawn and send.

data Actor : Type → Type → Type

Receive returns a message from the mailbox, so the value has the
same type as that which it expects to receive.

receive : Actor l l

Spawn starts a new actor, which may have a different message type,
and returns a reference to the new actor to the spawning actor. An
actor identifier embeds the expected message type of its actor.

spawn : (Actor l’ a)
→ Actor l (ActorID l’)

data ActorID : Type → Type

Send sends a message to another actor. The function uses the mes-
sage type embedded in the actor identifier to make sure the receiving
actor is expecting the type of message being sent.

send : ActorID l’ → l’ → Actor l ()

3.1 Requests and Responses

This send and receive approach is very low-level. In lots of cases, I
want a process to make a synchronous request to another concurrent
process, and then receive a response.

For example, I may have a concurrent lock server. This server
accepts requests of either Lock or Unlock. If we make a Lock re-
quest, the response is either Grant or Wait. For Unlock requests,
the response is always ().

Concurrent Lock Server Example

data LockReq = Lock | Unlock
data LockLockResp = Grant | Wait

total
LockResp : LockReq → Type
LockResp Lock = LockLockResp
LockResp Unlock = Unit

total
lock_srv : (r :LockReq) → LockResp r
lock_srv Lock = Wait
lock_srv Unlock = ()

In this example, the type of the response depends on the value of
the request, which is why I need dependent types. I can define the
request-response protocol in terms of the request type, and the func-
tion that computes the response type. This allows me to have a single
req function that computes its type not only off the request-response
process id, but also the request value.

data ReqResI : (r : Type)
→ (r → Type) → Type

data ReqResId : ReqResI r f → Type

req : {i : ReqResI r f}
→ ReqResId i
→ (m : r) → IO (f m)

This can be enforced on the server side by making sure the function
that is spawned to become the server process has the same type as
that specified in the interface.

spawn : {i : ReqResI r f}
→ ((m : r) → f m)
→ IO (ReqResId i)

To bring this all together, I can revisit my example, showing the types
of various calls:

lock_i : ReqResI LockReq LockResp

spawn lock_srv : IO (ReqResId lock_i)

lock_id : ReqResId lock_i

req lock_id Lock : LockLockResp
req lock_id Unlock : Unit

4. Verified ERLANG/OTP Behaviours

The ERLANG/OTP libraries contain higher-level generic concurrent
patterns, which build upon these basic building blocks to provide
more useful abstractions such as concurrent servers (gen_server ),
concurrent FSMs (gen_fsm), and concurrent event handling systems
(gen_event).

In particular, a gen_server is a concurrent actor which can be
communicated with both synchronously and asynchronously. We can
model this as a combination of the models we have defined above.
A similar approach seems to be applicable to concurrent FSMs and
event handling systems.

Not only can I verify all communication against the specified con-
current interfaces, but I can use totality checking to make sure the
servers handle all possible messages. In conventional Erlang pro-
grams, concurrent interfaces are usually a lot harder to discover and
understand.

5. Related Work

My approach differs from Session Types in that it does not spe-
cify anything at the protocol level, and it supports dependently-typed
proofs about the compiled programs.

The approach also differs from existing systems such as verlang
in that ERLANG programs are produced after type checking and eras-
ure, rather than by program synthesis.

6. Conclusion

I have shown that IDRIS can be used successfully for concurrent
programming. With my new ERLANG code generator and associated
IDRIS libraries, I can now write and run safe, flexible actor-based pro-
grams which conform to statically verified guarantees.

ICFP-SRC 2015, International Conference on Functional Programming, Student Research Competition (Undergraduate), September 2015, Vancouver, Canada


