ERLANG/OTP Meets Dependent Types

Archibald Samuel Elliott
University of St Andrews

sam@lenary.co.uk

ACM Member Number: [REDACTED]
Category: Undergraduate

Adviser: Edwin Brady, University of St Andrews
Postal Address: [REDACTED]

1. Introduction

Concurrent programming is hard.

Combining the Actor model with a resilient runtime system and
well-understood generic concurrent patterns, ERLANG/OTP [[II] has
provided an environment that helps programs achieve reliablility
other systems can only aspire to'.

It has done this in the distinct absence of any particularly ad-
vanced static verification system, despite how useful this could
be for producing correct programs. ERLANG programmers usu-
ally turn to dialyzer [B, [[2, 3], a static analysis tool that includes
success-type checking, or QuickCheck [?] when looking to verify
their programs.

What happens if I can use a type system to codify and verify
how actors in a program communicate with each other? Surely this
would make it easier to construct correct concurrent programs.

To do this, I require a way of expressing and verifying types that
is compatible with existing ERLANG codebases. The way I chose to
do this is to compile from a statically-typed programming language
into ERLANG.

IDRIS is a general-purpose dependently-typed pure functional
programming language [4]. The usefulness of a dependently-typed
language is that types can be predicated on values, which allows
more flexibility than conventional type systems. The reason for
choosing IDRIS above Agda or Coq is that the IDRIS compiler
provides a mechanism for writing new code generators without
having to modify the rest of the IDRIS compiler.

! https://pragprog.com/articles/erlang

[Copyright notice will appear here once ’preprint’ option is removed.]

I have:

* produced a compiler that can turn dependently-typed IDRIS
programs into ERLANG programs;

* devised a system for reasoning about concurrent IDRIS pro-
grams; and

* constructed a system for reasoning about the generic concurrent
patterns that ERLANG/OTP provides.

2. Related Work

My approach differs from Session Types [, 8-, 5] in that it
does not specify anything at the protocol level, and it supports
dependently-typed proofs about the compiled programs.

The approach also differs from existing systems such as verlang
[, 4] in that ERLANG programs are produced after type checking
and erasure, rather than by program synthesis.

3. Compiler

The IDRIS compiler can provide three different intermediate repre-
sentations for code generation. All no longer include any dependent
types. They are, from highest- to lowest-level: an IR that includes
lambdas and laziness; a defunctionalised IR; and an applicative nor-
mal form IR.

I chose the defunctionalised IR as it maps most closely to
ERLANG syntax. IDRIS foreign function call system required a
small redesign to support more languages, and the design of a
foreign export system which I assisted Brady with. IDRIS programs
can now call and be called by ERLANG programs.

4. Verified Actor Systems

An actor is an isolated process with a mailbox of incoming mes-
sages, and the ability to send messages to other actors, or to spawn
other actors [3, B]. The fundamental concurrent interface to specify
is to type the messages the actor will receive.

An actor-based computation, denoted Actor 1 a, is parame-
terised over two types: the type of messages it expects 1, and the
type the computation will perform a. There are three operations on
these actors: receive, spawn and send.
data Actor Type —+ Type — Type
Receive returns a message from the mailbox, so the value has the
same type as that which it expects to receive.

receive Actor 1 1

Spawn starts a new actor, which may have a different message type,
and returns a reference to the new actor to the spawning actor. An
actor identifier embeds the expected message type of its actor.

spawn : (Actor 1’ a) — Actor 1 (ActorID 1°)
data ActorID : Type > Type

2015/9/2

https://pragprog.com/articles/erlang

Send sends a message to another actor. The function uses the
message type embedded in the actor identifier to make sure the
receiving actor is expecting the type of message being sent.

send : ActorID 1° > 1 > Actor 1 ()

5. Verified ERLANG/OTP Behaviours

The ERLANG/OTP libraries contain higher-level generic con-
current patterns, which build upon these basic building blocks
to provide more useful abstractions such as concurrent servers
(gen_server), concurrent FSMs (gen fsm), and concurrent event
handling systems (gen_ event).

In particular, a gen_server is a concurrent actor which can
be communicated with synchronously (calls) and asynchronously
(casts). Casts can be modelled just like I have done for actors above.

Calls, on the other hand, have both a request and a response
component, where the value of the request can choose the type of
the response using dependent types. This allows more flexibility
than a conventional type system could provide.

A similar approach seems to be applicable to concurrent FSMs
and event handling systems.

Not only can I verify all calls and casts against the specified
concurrent interfaces, but I can use totality checking to make sure
the servers handle all possible messages. In conventional Erlang
programs, concurrent interfaces are usually a lot harder to discover
and understand.

6. Conclusion

I have shown that IDRIS can be used successfully for concurrent
programming. With my new ERLANG code generator and associ-
ated IDRIS libraries, I can now write and run safe, flexible actor-
based programs which conform to statically verified guarantees.

References

[1] J. Armstrong. A history of Erlang. In the third ACM SIGPLAN
conference, pages 6—1-6-26, New York, NY, USA, June 2007. ACM
Press.

[2

—

T. Arts, J. Hughes, J. Johansson, and U. Wiger. Testing telecoms
software with quviq QuickCheck. In ERLANG ’06: Proceedings of
the 2006 ACM SIGPLAN workshop on Erlang, pages 2—10, New York,
NY, USA, Sept. 2006. ACM Request Permissions.

H. Baker and C. Hewitt. Laws for communicating parallel processes.
1977.

E. Brady. Idris, a general-purpose dependently typed programming
language: Design and implementation. Journal of functional program-
ming, 23:552-593, Sept. 2013.

[5] T. Carstens. verlang. URL https://github.com/tcarstens/
verlang.

[3

[t

[4

=

[6

=

M. Christakis and K. Sagonas. Static detection of race conditions in
Erlang. pages 119-133, 2010.

[7]1 S. Fowler. Monitoried session erlang. URL https://github.com/
SimonJF/monitored-session-erlang.

[8] C. Hewitt and H. Baker. Actors and continuous functionals. 1977.
[9] K. Honda. Types for dyadic interaction. pages 509-523, 1993.

[10] K. Honda, V. T. Vasconcelos, and M. Kubo. Language Primitives and
Type Discipline for Structured Communication-Based Programming.
In ESOP ’98: Proceedings of the 7th European Symposium on Pro-
gramming: Programming Languages and Systems. Springer-Verlag,
Mar. 1998.

[11] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous
session types. In POPL '08: Proceedings of the 35th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages. ACM Request Permissions, Jan. 2008.

[12] T. Lindahl and K. Sagonas. Practical type inference based on success
typings. In PPDP ’06: Proceedings of the 8th ACM SIGPLAN sym-
posium on Principles and practice of declarative programming. ACM
Request Permissions, July 2006.

[13] S. Marlow and P. Wadler. A practical subtyping system for Erlang.
In ICFP ’97: Proceedings of the second ACM SIGPLAN international
conference on Functional programming. ACM Request Permissions,
Aug. 1997.

[14] C. Meiklejohn. Vector Clocks in Coq: An Experience Report.
arXiv.org, June 2014.

[15] D. Mostrous and V. T. Vasconcelos. Session typing for a featherweight
Erlang. In COORDINATION’11: Proceedings of the 13th interna-
tional conference on Coordination models and languages. Springer-
Verlag, June 2011.

2015/9/2

https://github.com/tcarstens/verlang
https://github.com/tcarstens/verlang
https://github.com/SimonJF/monitored-session-erlang
https://github.com/SimonJF/monitored-session-erlang

	Introduction
	Related Work
	Compiler
	Verified Actor Systems
	Verified Erlang/OTP Behaviours
	Conclusion

