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Abstract This paper presents a new programming methodology for introducing and
tuning parallelism in Erlang programs, using source-level code refactoring from
sequential source programs to parallel programs written using our skeleton library,
Skel. High-level cost models allow us to predict with reasonable accuracy the parallel
performance of the refactored program, enabling programmers to make informed deci-
sions about which refactorings to apply. Using our approach, we demonstrate easily
obtainable, significant and scalable speedups of up to 21 on a 24-core machine over
the sequential code.

1 Introduction

Software development approaches are not keeping pace with the current trend towards
increasingly parallel multi-core/many-core hardware, as epitomised by the recent
announcement of Intel’s 60-core Xeon Phi x86 co-processor. Most current applications
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programmers are not experts in parallelism, so knowing when and where to effectively
deploy parallelism can seem ad-hoc or even impossible. Most parallel programs are
therefore written using simple, primitive and small-scale threading techniques. While
fully automatic approaches may work in specific cases, they lack generality and scal-
ability. What is needed is a more systematic methodology for introducing and tuning
parallelism. This paper describes such a methodology, and explains how it can be used
in Erlang [1]. We introduce a novel programming methodology that uses advanced
semi-automatic software refactoring techniques coupled with algorithmic skeletons
and supported by high-level cost models, to provide a structured approach for rea-
soning about parallel programming. We use cost models to predict the outcome of
the refactorings, allowing a programmer to intelligently decide which refactorings to
apply. Automated refactoring tools are used as part of the normal parallel tool-chain
to introduce and tune the parallelism. A set of high-level skeletons [2] provides the
palette of possible parallelisations to choose from; corresponding cost models are used
to provide the evidence that is needed to make informed decisions; and refactoring
tools provide the programmer with choice and enforce the required discipline to cor-
rectly implement those decisions. Used properly, refactoring can improve programmer
productivity by: helping the programmer to make the right implementation decisions;
hiding unnecessary implementation decisions and detail; warning of common pitfalls;
and ensuring that only correct transformations are applied. In order to demonstrate
the principle of our methodology, we have chosen to use Erlang as an example of a
high-level language where parallelism has been fairly unexplored, but which has an
expanding programmer community that is keen to embrace the multi-core era.

This paper makes the following main contributions:

1. we introduce a new set of refactorings for Erlang, prototyped in the Wrangler
refactoring tool [3], that introduce and tune parallelism;

2. we formally define rewrite rules for these refactorings for Erlang;
3. we introduce, for the first time, a domain-specific language for expressing skeletons

in Erlang;
4. we provide and instantiate cost models for our skeletons in Erlang; and,
5. we show, using our refactoring approach, how to easily achieve a speedup of up

to 21 on a 24-core machine for one example.

In addition to the above contributions, this paper also shows an example of effective
parallelisation in Erlang, adding to previous attempts, such as Parallelising Dialyzer [4]
and a scalability benchmark suite for Erlang [5]. Although it is common to provide
cost models and abstract rewrite rules for specific algorithmic skeletons, this paper
represents the first attempt, of which we are aware, to provide a concrete and tool-
supported programming methodology that builds on these lower-level mechanisms
to develop parallel Erlang programs. While this paper considers only Erlang, it is
important to note that the principles of the refactorings, the skeleton implementations
and the associated cost models that are described here can be carried over to other
skeleton frameworks for other languages, including C, C++, Java and Haskell. Skele-
tons provide a structural expression for parallelism, where the structure is common
across different languages. Refactoring, on the other hand, relies on a disciplined struc-
tural approach. While the skeletons themselves are implemented in terms of different
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syntaxes depending on the language being used, the underlying abstract structure
common to the skeletons, and the rewritings associated with them, remains the same.

2 A Cost-Directed Parallel Programming Methodology

Our parallel programming methodology aims to support the inexperienced parallel
programmer who may have little knowledge of how to apply/introduce skeletons or
tuning; and also the more experienced programmer who simply wants an automated
tool that checks that the transformations are correct, supplies cost information, and
automatically rewrites source code under their direction. Our proposed refactoring
methodology is shown in Fig. 1. The programmer commences with a sequential pro-
gram, without any introduced skeletons or parallelism. The first step is to gain evidence
about the program, using profiling information and cost models (such as those from
Sect. 3.3). Using this evidence, the programmer can then use refactoring to automat-
ically introduce skeletons into the program.

Refactoring is the process of changing the structure of a program while preserving
its functional semantics in order, for example, to increase code quality, programming
productivity and code reuse. The term refactoring was first introduced by Opdyke in
his PhD thesis in 1992 [6], and the concept goes at least as far back as the fold/unfold
system proposed by Burstall and Darlington in 1977 [7].

Following a refactoring step, it is possible that further factorisations of a program
can be made available or that a further tuning/refinement step is required to get the
desired parallelism. The programmer may therefore re-evaluate the factorised program,
gathering further evidence about the predicted performance and then applying further
refactorings, as required. These steps can be repeated in order to introduce nested
skeletons or to refine the program based on different inputs, for example. At any step
the programmer can undo and redo their changes using the refactoring tool; this may
be in order to try a different set of factorisations that may lead to better performance,
where the input set changes, for example. In this way the methodology supports both
naive and experienced programmers, directing the former and assisting the latter to
achieve good parallelisations. Section 5 gives two simple case studies that illustrate
the use of this methodology.

Fig. 1 The cost-directed parallel refactoring methodology
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3 Background

3.1 Wrangler

The refactorings are applied automatically to a selected piece of syntax in the
refactoring editor and are fully implemented in the Wrangler [3] refactoring tool for
Erlang, as shown in Fig. 2. Wrangler itself is implemented in Erlang and is integrated
into both Emacs and Eclipse. Figure 2 shows Wrangler in Emacs, presenting a menu
of refactorings for the user. Like most interactive semi-automatic refactoring tools,
the user follows a number of steps in order to invoke a refactoring:

1. The user starts with either an Emacs or an Eclipse session, with their sequential
or parallel code.

2. The user identifies and highlights a portion of code that is amenable for refactoring
in the text editor.

3. The appropriate refactoring is then selected from the Wrangler drop down menu.
This step requires user-knowledge.

4. Wrangler will then ask the user for any additional parameters, such as the number
of workers, any additional functions, or any additional information, such as new
names for any new definitions that may be introduced by the refactoring process.

5. Wrangler then checks the pre-conditions, and if the pre-conditions hold, the pro-
gram is transformed by the tool, depending on the refactoring rule being invoked.

6. The source code in the editor is automatically changed to reflect the refactored
program.

We exploit a recent Wrangler extension that allows refactorings to be expressed as
AST traversal strategies in terms of their pre-conditions and transformation rules. The

Fig. 2 The Erlang refactorer, Wrangler, showing a list of parallel refactorings
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extension comes in two parts: a user-level language for describing the refactorings
themselves [8]; plus a Domain-Specific-Language to compose the refactorings [9].

3.2 Skeletons

We take a pattern-based approach where a parallel application is developed by com-
posing algorithmic skeletons. An algorithmic skeleton [2] is an abstract computational
entity that models some common pattern of parallelism (such as the parallel execution
of a sequence of computations over a set of inputs, where the output of one computa-
tion is the input to the next; i.e., a pipeline). A skeleton is typically implemented as a
high-level function that takes care of the parallel aspects of a computation (e.g. the cre-
ation of parallel threads, communication and synchronisation between these threads,
load balancing etc.), and where the programmer supplies sequential problem-specific
code and any necessary skeleton parameters. These skeletons may be specialised by
providing (suitably wrapped) sequential portions of code implementing the business
logic of the application.1 For this paper, we restrict ourselves to four classical parallel
skeletons, that are among the most common and most useful:

• seq is a trivial wrapper skeleton that implements the sequential evaluation of a
function, f :: a→ b, applied to a sequence of inputs, x1, x2, . . . , xn .
• pipemodels a parallel pipeline applying the functions f1, f2, . . . , fm in turn to a

sequence of independent inputs, x1, x2, . . . , xn , where the output of fi is the input
to fi+1. Parallelism arises from the fact that, for example, fi (xk) can be executed
in parallel with fi+1( fi (xk−1)). Here, each fi has type a→ b.
• A farm skeleton models the application of a single function, f :: a → b, to

a sequence of independent inputs, x1, x2, x3, . . . , xn . Each of the f (x1), f (x2),

f (x3), . . . , f (xn) can be executed in parallel.
• A map skeleton is a variant of a farm where each independent input, xi , can be

x1, x2, x3, . . . , xn , is partitioned (p:: a→ [b]) into a number of sub-parts that can
be worked upon in parallel, a worker function, f :: [b] → [c], is then applied to
each element of the sublist in parallel, finally the result is combined (c:: [c] → d)
into a single result for each input.

3.3 Skeleton Cost Models

In this section we give a corresponding high-level cost model for each skeleton in Sect.
3.2, derived after those presented in [10,11]. These cost models capture the service
time of our skeletons and will be used to drive the refactoring process. In order to
demonstrate the principles of our methodology, the cost models that we consider here
are intentionally high-level, abstracting over many language- and architecture-specific
details. If desired, more complex models could be used to yield possibly more accurate
predictions for a specific architecture, without changing the general methodology. A
suitable cost model for the parallel pipeline with m stages is:

1 Our skeleton implementations can be found at https://github.com/ParaPhrase/skel.
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TC pipeline (L) = maxi=1...m(Tstagei (L))+ Tcopy(L) (1)

where L represents the maximum size of the input tasks, xi , and Tcopy is the time it
takes to copy data between the pipeline stages. This defines the cost of a steady-state
pipeline as the maximum execution time for any of the stages in the pipeline. The
corresponding cost model for the map skeleton is:

TCmap (L) = Tdistrib(Nw, L)+ TFun(L)

Max(Np, Nw)
+ Tgather (Nw, L)

where NW = nparti tions(L) (2)

where Tdistrib and Tgather are the times to distribute the computations and gather
the results, respectively (see below), nparti tions(L) is the number of partitions in
L created by the partition function, and TFun(L) is the time it takes to compute the
entire sequential map computation. Here we employ Np as the number of processors
available in the system. For our Erlang definition, more accurate definitions of Tdistrib

and Tgather are:

Tdistrib(Nw, L) = Nw · Tspawn + Nw ·
(

Tsetup + Tcopy

(
L

Nw

))

Tgather (Nw, L) = Nw ·
(

Tsetup + Tcopy

(
L

Nw

))

where, Tsetup is the time it takes to set up Nw Erlang processes, and Tcopy is the time
it takes to copy L items of data to Nw processes.

For the farm skeleton, assuming that each worker task has a similar granularity and
that all workers are fully occupied, the corresponding cost model is similar to that for
the map skeleton, except that NW is a fixed parameter:

TC f arm (Nw, L) = max{Temitter (Np, Nw, L),
TFun(L)

Max(Np, Nw)
, Tcollector (Nw, L)}

(3)

3.4 Erlang

Erlang is a strict, impure, functional programming language with support for first-
class concurrency. Although Erlang provides good concurrency support, there has
so far been little research into how this can be used at a higher level to effectively
support deterministic, structured parallelism. The Erlang concurrency model allows
the programmer to be explicit about processes and communication, but deals implicitly
with task placement and synchronisation. It provides three concurrency primitives:

• spawn to execute functions in a new lightweight Erlang process;
• ! to send messages between Erlang processes; and,
• receive to receive messages from another Erlang process.
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Process scheduling is handled automatically by the Erlang Virtual Machine, which
also provides basic load balancing mechanisms.

4 Skeleton Equivalences and Refactoring

This section gives a number of high-level structural equivalence relations for skele-
tons and derives corresponding refactorings for Erlang. The rules given here define
language-independent structural equivalences between two (possibly nested) skele-
tons, that can be used to improve performance by rewriting from one form to the
other. Figure 3 shows four well-known skeleton equivalences (see, e.g. [12,13]).
Here Pipe, ◦ and Map refer to the skeletons for parallel pipeline, function compo-
sition and parallel map, respectively, and S denotes any skeleton. All skeletons work
over streams. Parti tion and Combine are primitive operations that work over non-
streaming inputs. p and c are simple functions that specify a partition (p:: a → [b]),
and a combine operation (c:: [b] → a). Working from left to right in these equiva-
lences increases the parallelism degree, while working from right to left reduces it.
Reading from left to right, we can therefore interpret the rules as follows:

1. pipe intro. A sequential function composition with n function applications can be
rewritten as a parallel pipeline with n stages.

2. map fission. A single parallel map over a sequential composition can be rewritten as
a composition where each stage is a parallel map. Here we state that the partitioning
and combining functions for the map on the left hand side are replicated in the
maps on the right hand side. The inverse of this is map fusion, read from right to
left.

3. farm intro. A skeleton or sequential computation over a stream can be rewritten to
a farm computation over the stream.

4. data2stream. A parallel map can be rewritten as a parallel farm. This requires the
introduction of partitioning and combining stages before and after the farm.

5. map intro. A skeleton or sequential computation over a stream can be rewritten
to a map, given the combining and partitioning functions c and p, and provided
there is a translation between the skeleton S1 and a skeleton, S′1, where S′1 works
over each of the partitions produced by p.

Their inverses, read from right to left, are pipe elimination, map fusion, farm elimina-
tion, stream2data and map elimination. Any combination of these rules can be used
as part of a (reversible and undoable) parallel refactoring process.

Fig. 3 Some standard skeleton equivalences
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4.1 Refactoring Erlang

This section presents new refactorings that introduce parallelism for Erlang, imple-
menting the rules from Fig. 3. Each refactoring is described as a transformation rule
and any associated preconditions, operating over the abstract syntax tree (AST) of the
source program.

Refactoring(x0, . . . , xn) = {Rule× {Condition}}

where x0, . . . , xn are the arguments to the refactoring. The refactoring rules are defined
as functions over nodes that represent expressions in the AST:

E�.�::Expr → Expr

Choice is denoted by a ⊕ b where rule a is tried first, and if it fails to match the
program segment under consideration, b is tried instead. The refactoring rules are
defined in terms of choice as typically the rule to be applied depends upon the source
code highlighted by the user. For example, refactoring a list comprehension requires a
different rule from refactoring a recursive definition. Quasi-quotes are used to denote
code syntax, so that �f = e� denotes a function in the AST of the form f = e,
for example. In order to use the cost models to direct the refactoring process, each
cost model is implemented as a simple Erlang computation. The refactorer stores the
programmer-provided values for the various parameters of the cost models, such as
the cost of the sequential computation of a skeleton and the predicted partitioning and
combine costs. The cost models are then instantiated with these profile costs, and the
result of the cost models are presented to the user, who can thereby make an informed
decision about which refactoring to choose.

4.1.1 Pipeline Introduction

Refactoring rules for the Introduce Pipeline Refactoring are shown below.

PipeComp(ρ,e) =
E�[ f1 ( f2 ( ... fn(Input )... )) || Input← Inputs ] � ⇒

� skel : run([{pipe, [{seq,fun ?MODULE :fn/1}, ... {seq,fun ?MODULE :f2/1},
{seq,fun ?MODULE :f1/1}]}],Inputs) �

{skel ∈ imports(ρ),run ∈ ρ,pipe ∈ ρ, seq ∈ ρ,f1,f2, , ...,fn ∈ ρ,Inputs ∈ ρ}
⊕PipeSeq(ρ,e) =

E� {seq, (fun(X)→ f1 ( f2 ( ... fn(X )... )) end)}� ⇒
� {pipe, [{seq,fun ?MODULE : fn/1}, ... {seq,fun ?MODULE : f2/1},

{seq,fun ?MODULE :f1/1}]} �
{ pipe ∈ ρ,seq ∈ ρ,f1,f2, , ...,fn ∈ ρ}

(4)

Each rule takes an environment, ρ, and an expression, e, denoting the syntax phrase
to be matched. The first rule, PipeComp, matches an expression that forms a list
comprehension in Erlang, e.g.:

1 [ f1 (f2 (f3( Input ))) || Input <- Inputs ]
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and transforms the expression into a call to the skeleton DSL, with a pipeline:

skel:run([{pipe , [{seq ,fun ?MODULE:f3/1}, {seq ,fun ?MODULE:f2/1}
{seq ,fun ?MODULE:f1/1}]}] , Inputs)

Here we introduce a call to the skeleton library (in module skel), calling the top-level
function, run, which takes a list of skeletons to execute. Each skeleton is expressed
as a tuple: pipe denotes the skeleton is a pipeline, and seq denotes a sequential
computation. Here the pipeline has three stages, where the first stage executes f1, the
second, f2 and the third, f3. The input stream to the pipeline is preserved as a list,
Inputs. ?MODULE:f/1 is required in Erlang in order to locate the module defining
the function, f (with an arity of 1); ?MODULE means that the module is to be found
from the namespace, rather than being named explicitly. In the preconditions, the
refactoring checks that the newly introduced skeletons, pipe and seq, the stages of
the pipeline, and the list of inputs,Inputs, are in scope. In the second rule, PipeSeq,
we match an existing sequential skeleton (as part of a nesting of skeletons inside a
run call), and transform it into a pipeline skeleton.

4.1.2 Parallel Map Introduction

Here we show the refactoring rules to introduce a parallel map skeleton into Erlang,
where we useparmap to distinguish between the parallelmap skeleton and the Erlang
built-in sequential lists:map function. The corresponding refactoring rules for the
Introduce Parallel Map Refactoring are:

ParMapIntroSeq(ρ,e, g, p, c) =
E�{seq,F}� ⇒
�{parmap, [{seq,fun ?MODULE :g/1}],fun ?MODULE :p/1,fun ?MODULE :c/1}�
{seq ∈ ρ,parmap ∈ ρ, p ∈ ρ, c ∈ ρ, g ∈ ρ}

⊕ParMapIntroComp(ρ,e, g, p, c) =
E�[ f(Input ) || Input← Inputs ]� ⇒
�skel : run([{parmap, [{seq,fun ?MODULE :g/1}],fun ?MODULE :p/1,fun ?MODULE :c/1}],

Inputs)�
{skel ∈ imports(ρ),parmap ∈ ρ,run ∈ ρ,seq ∈ ρ,Inputs ∈ ρ, p ∈ ρ, c ∈ ρ, g ∈ ρ}

(5)

The Par MapI ntroSeq rule takes an arbitrary sequential skeleton, {seq, F}, that
computes the result of a sequential function, F (the input to F is implicit here, and
is handled at a higher-level by the skel:run function), and transforms it into a
parmap skeleton, passing a function, g, into the map, together with partition and
combine functions, p and c. These functions should be supplied as arguments to the
refactoring, and must be in scope after the transformation. The second rule in Eq.
5, Par MapI ntroComp, allows a list comprehension to be transformed into a new
skeleton composition. For example, suppose that we have:

[ f(Input) || Input <- Inputs ].

Using the MapI ntroComp rule, we can transform this into:

skel:run([{parmap , [{seq , fun ?MODULE:f’/1}],
fun ?MODULE:partition/1, fun ?MODULE:combine /1}], Inputs)
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Here we transform the list into a call to skel:run where parmap denotes the
parmap skeleton, f’ is the user supplied worker for the parmap, and partition
and combine are user supplied functions for the partitioner and combiner.

4.1.3 Farm Introduction

Refactoring rules for the Introduce Task Farm Refactoring are shown below:

FarmIntroSeq(ρ,e,Nw) =
E�{seq,E}� ⇒
�{farm, [{seq,E}],Nw}�
{seq ∈ ρ,farm ∈ ρ}

⊕FarmIntroMap(ρ,e,Nw) =
E�lists : map(fun ?MODULE : f/1,List)� ⇒
�skel : run([{farm, [{seq,fun ?MODULE : f/1],Nw}],List)�
{seq ∈ ρ,farm ∈ ρ, }

⊕FarmIntroComp(ρ,e,Nw) =
E�[ f( Input ) || Input← Inputs ]� ⇒
�skel : run([{farm, [{seq, (fun(Input)→ ?MODULE : f( Input )end}],Nw}],Inputs)�
{skel ∈ imports(ρ),run ∈ ρ,seq ∈ ρ,farm ∈ ρ}

⊕FarmIntroComp2(ρ,e,Nw) =
E�[ f1 ( f2 ( ... fn(Input )... )) || Input← Inputs ]� ⇒
�skel : run([{farm, [{seq, (fun(Input)→ f1 ( f2 ( ... fn(Input )... )) end)}],Nw}],

Inputs)�
{skel ∈ imports(ρ),run ∈ ρ,seq ∈ ρ,farm ∈ ρ,Input f resh}

(6)

The rules take three parameters: an environment, ρ, a selected expression, e, and
the number of workers for the farm, Nw. The first rule, Farm I ntroSeq, states that if
we have a seq skeleton wrapping an expression, E, then we can transform it into a
farm skeleton, with an additional constraint, Nw, governing the number of task farm
workers. We note that the Par MapI ntroSeq rule in Eq. 5 does not require an Nw
parameter, as the partition function, p, divides the input into n components according
to its definition. In the rule, Input f resh denotes that a new name, Input, will be
introduced, and that the name will be new and not conflict with any other names in the
scope in which Input is defined and used. The Farm I ntroMap rule allows a farm
to replace an existing sequential map. In this case, the function passed into the map,
f, becomes the worker function of the farm; the input list, List, becomes the input
stream of tasks to the farm. Moreover, the refactoring rule may also match against a
list comprehension, shown by Farm I ntroComp, converting it into a task farm. In
this case, if there is a function composition as the farm worker, then an anonymous
function is introduced in order to pass the tasks into the task farm (this is shown
in Rule Farm I ntroComp2). For example, suppose that we have the following list
comprehension:

[ f ( f2 ( Input )) || Input <- Inputs ]

The refactoring will transform this into:
skel:run([{farm , [{seq , (fun(Input) -> f ( f2 (Input )) end)}],

NW}], Inputs)
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Here, farm denotes the task farm skeleton, where we supply a list of worker skele-
tons, denoted by [ {seq, ...} ], where here each worker function is a seq
skeleton, wrapping the function composition, f ( f2 (Input)). An anonymous
function, that takes Input as an argument has been introduced, in order to pass the
task into the worker.

4.1.4 Introduce Chunking

Having introduced parallelism via skeletons, often the programmer needs to further
tune the parallel performance. Here we discuss a new refactoring that enables pro-
grammers to increase the granularity of the parallelism. The rules for the Introduce
Chunking Refactoring are shown below:

IntroChunkComp(ρ, c,e) =
E�[ f( Input ) || Input← Inputs ]� ⇒
�skel : run([{parmap, [{seq,fun ?MODULE : f/1}],fun skel : partition/1,

fun skel : combine/1}],skel : chunk(Inputs,c))�
{skel ∈ imports(ρ),parmap ∈ ρ,run ∈ ρ,seq ∈ ρ}

⊕IntroChunkFarm(ρ, c,e) =
E�skel : run([{farm, [{seq,fun ?MODULE : f/1}],Nw}],Inputs)� ⇒
�skel : run([{parmap, [{seq,fun ?MODULE : f/1}],fun skel : partition/1,

fun skel : combine/1}],skel : chunk(Inputs,c))�
{skel ∈ imports(ρ),run ∈ ρ,parmap ∈ ρ,seq ∈ ρ,farm ∈ ρ,Nw ∈ ρ}

(7)

The first rule, I ntroChunkComp, takes, along with an environment, ρ, and a selected
expression, e, a chunk size, c. The refactoring then matches a list comprehension and
transforms it into a new parmap skeleton. Here we chunk up the tasks in the input list,
by calling a function, chunk, located in the skeleton library. chunk is parameterised
by the input list and the chunk size, and returns a new list of tasks, grouped together
in sizes of c. The function partition simply passes the chunks to the map workers
and combine appends the results into a result list.

The second rule, I ntroChunk Farm, allows the programmer to introduce a chunk
for a skeleton that is already farmed. In this case, the refactoring simply rewrites the
farm skeleton into a parmap, again with the input list chunked into c chunks. It is
important to note that, in both of these refactoring rules, the function f remains the
same when passed as an argument to the parmap skeleton. Here, the partition,
combine and chunk functions that are introduced are supplied by the Skel library
and are defined:
partition(X) -> X.
combine ([])- >[];
combine ([X|Xs]) -> lists:append(X, recomp(Xs)).
chunk ([], ChunkSize) -> [];
chunk(List , ChunkSize) ->

case (length(List) < ChunkSize) of
true -> [List];
false -> Chunk = lists:sublist(List , ChunkSize),

NewList = lists:sublist(List , ChunkSize +1),
[ Chunk | chunk(NewList , ChunkSize) ]

end.

Here, chunk groups together ChunkSize elements in a list; partition acts as
the identity function (in the parmap skeleton, the partition function decomposes
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a single element of the input stream; in this case a single element is a group of elements
(a chunk) where we want each worker thread to operate over a whole chunk, and
so we disable the partition function by using the identity instead), and combine
concatenates the partitioned results into a single list.

To illustrate how this chunking refactoring works, consider the following Erlang
code, which applies a fine-grained function, f, to each element in an input list,
Inputs, using a list comprehension:

[ f(Input) || Input <- Inputs ].

We can rewrite this into an equivalent program using a combination of the chunk,
combine and partition functions, therefore increasing granularity:

skel:run({parmap , [{seq , fun ?MODULE:f/1}], fun skel:partition/1,
fun skel:combine /1}],
skel:chunk(Inputs , C)).

Here we also have to introduce a call to lists:map inside the list comprehension,
as f now operates over a partition of list elements (rather than a single element,
as before). This is now equivalent to the following parmap skeleton using Skel:

skel:run({parmap , [{seq , fun ?MODULE:f/1}], fun skel:partition/1,
fun skel:combine /1}],
skel:chunk(Inputs , C)).

Here, we lose the explicit lists:map when calling f, as the skeleton implicitly
assigns an instance of f to each partition, performing an implicit map. It is possible
to use the cost model defined for the map to calculate a chunk size, as the model takes
into account the tradeoff between the process spawn overhead, which increases with
smaller chunk sizes, and the advantage of executing more and more things in parallel.

5 Refactoring Case Studies

We present two worked examples, showing how the rules above can be applied as
part of our methodology to introduce skeletons and also to further refine, introduce
and tune the skeleton program. Our first source program is a denoising algorithm,
Denoise, where we initially introduce a pipeline factorisation, and then, following
cost analysis, refine this factorisation into a nesting of skeletons that also include
a parmap and a task farm. Our second example is from the domain of symbolic
computation, SumEuler, which computes the sum over the Euler totient function,
applied to a list of integer numbers. We initially develop a data-parallel version of
SumEuler using refactoring, and then further refactor to introduce chunking.

5.1 Denoising

In this section we illustrate the refactoring process on a simple example of denois-
ing a stream of satellite images. The basic program comprises a two-stage function
composition. In the first stage, geoRef, we apply an algorithm to each image as it is
received to consolidate geo-referencing information. These images are then passed to
a second stage,filter, where they are denoised. For the purposes of our experiment,
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Fig. 4 Example of a satellite image before and after denoising, compared with original image

we abstract over the algorithm, providing a synthetic reproduction of the sequential
denoiser code in Erlang. Figure 4 shows an example of a satellite image with 70 %
noise on the left hand side, and on the right hand side after the denoising. The bot-
tom portion of the figure shows the original image. The programmer uses information
about the costs of each computation stage, plus basic metrics for Tgather and Tdistrib

(obtained using profiling) to instantiate the cost models and the choice of refactoring.

Stage 1: Introduce a Pipeline The basic structure of the denoiser is:

denoise(Ims) -> [ filter (geoRef ( Im ) ) || Im <- Ims ].

Here a simple function composition is applied to a list of images. Our timings show
that the GeoRef stage takes 171 ms to compute one image, and the Filter stage
takes 466 ms for one image. The cost of the composition is simply the sum of the costs
of the stages:

TCcomp = (Tstage1 + Tstage2)

Thus to denoise 1,024 images takes (171+ 466) ∗ 1, 024 ms. Based on these calcula-
tions, the programmer applies the Introduce Pipeline Refactoring (Rule PipeComp)
to transform the function composition into a parallel pipeline, in order to reduce the
overall runtime by the first stage:
denoise(Ims) -> skel:run([{pipe , [{seq , fun ?MODULE:geoRef /1},

{seq , fun ?MODULE:filter /1}]}] , Ims).

Using the parallel pipeline cost model, we can determine the total completion time for
the pipeline to be 477 s for 1,024 images (Max(171, 466) ∗ 1, 024), plus some small
overhead to fill the pipeline and to send messages.

Stage 2: Introduce a Parallel Map Using the cost models given in Sect. 3.3 it can be
determined that the next stage of the refactoring process is to exploit data parallelism
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in either, or both, of the pipeline stages. The first stage of the pipeline, geoRef, does
not have a corresponding partition function to transform into a map skeleton. The
partitioner and combiner for the second filter stage, however, can be easily derived
from the implementation of filter. The programmer therefore first introduces a
new definition, filter’, plus associated partition and combine functions. This new
filter’ function works over smaller portions of the image, with partition
breaking down the image into 16 smaller partitions (where each partition goes to a
single worker operating in a thread). Based on these new functions, we profile the new
function, filter’ over all the images, giving us an average time of 50 ms. Although,
466/16 = 29 ms, the computational cost of filter’ is not directly proportional to
the size of the input data. This could be to do with other system overheads in the Erlang
system, such as Garbage collection or task creation/communication sizes. Profiling
the costs for the distribution, combine, gathering and copying stages of the parmap
appear to be have an approximate uniform value of 0.001 ms. Using the new costs
of filter, Tgather and Tdistrib, the programmer applies the Introduce Parallel Map
Refactoring (Rule Par MapI ntroSeq) to produce:
denoise(Ims) -> skel:run([{pipe , [{seq , fun ?MODULE:geoRef /1},

{parmap , [{seq ,fun ?MODULE:filter ’/1}],
fun ?MODULE:partition/1,
fun ?MODULE:combine /1}]}] , Ims).

This gives us a predicted service time of 175,104 ms for 1,024 images.

Stage 3: Introduce a Task Farm Although the geoRef stage does not lend itself
to easy partitioning, we can still use the cost models to determine that it would be
beneficial to apply the geoRef function to several images in parallel. Therefore the
next stage in the refactoring process is to apply the Introduce Task Farm Refactoring
(Rule Farm I ntroSeq).

denoise(Ims) -> skel:run ([{pipe ,[{farm ,[{seq ,fun ?MODULE:geoRef /1}],
Nw}, {parmap , [{seq , fun ?MODULE:filter ’/1}] ,

fun ?MODULE:partition /1,
fun ?MODULE:combine /1}]}] , Ims).

Based on the cost model for the farm skeleton in Section 3.3, the programmer predicts
an approximate service time of 34,153 ms with 8 workers (we introduce 8 workers to
soak up the remaining cores on the machine) by adding a farmed geoRef stage. This
represents a predicted speedup factor of 19.09 on a 24 core machine, compared to the
original sequential version.

5.2 Sum Euler

Stage 1: Introducing a Task Farm Introducing parallelism here is done by first iden-
tifying a sub-expression in the program that generates a compound data structure,
such as a list, and where each operation on the list could be computed in parallel.
sumEuler is actually an irregular problem, with different granularities for the task
sizes. This means that we profile the range of granularities, which range between 70µs
and 104 ms. Using the largest granularity to predict execution times allows us to predict
a worst case sequential execution path and a best case prediction for the parallelism.
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Our performance measurements indicate that the predicted sequential execution time
for sumEuler will be 1,040 s, where N = 10, 000. Introducing a task farm with
24 workers (one per core) will give a predicted execution time of 43 s on 24 cores.
This is a speedup prediction of 23.88. In our example, we select the lists:map
subexpression in sumEuler in order to introduce a farm:

sumEuler(N) -> result = lists:map(fun ?MODULE:euler/1,mkList(N)),
lists:sum(result ).

To introduce a task farm, we then use the refactoring tool to apply the Farm I ntroMap
rule from the Introduce Task Farm Refactoring:

sumEuler(N) -> result=skel:run([{farm ,[{seq , fun ?MODULE:euler /1}],
24}], mkList(N)),

lists:sum(result ).

Stage 2: Chunking While using a task farm for sumEuler creates a reasonable
amount of parallelism, the parallelism is too fine-grained and the program does not
scale as we expect. This is a common problem in the early stages of writing parallel
programs. To combat this, we use the I ntroChunk Farm rule from the Introduce
Chunking Refactoring. This refactoring allows us to group a number of small tasks into
one larger parallel task, where each parallel thread operates over a sub-list, rather than
just one element. We want each worker thread to be busy, so we chunk by assigning 416
to the parameter C below for groups of 416 elements (10, 000 tasks/24 workers). By
chunking in this way, we also decrease the communication costs, and reduce parallel
overheads. Chunking can generally be achieved in a variety of different ways. In our
example, we refactor our task farm into a map with a chunking and de-chunking stage:

sumEuler(N) -> skel:run([{parmap , [{seq , fun ?MODULE:euler /1}],
fun ?MODULE:partition/1,
fun ?MODULE:combine /1}],
chunk(List , C)),

The refactoring also introduces new functions, combine and partition:

partition(X) -> X.
combine ([]) ->[];
combine ([X|Xs]) -> lists:append(X, combine(Xs)).

5.3 Predicted Versus Actual Times

All measurements have been made on an 800 MHz 24 core, dual AMD Opteron 6176
architecture, running Centos Linux 2.6.18-274.el5. and Erlang 5.9.1 R15 B01, averag-
ing over 10 runs. Figure 5, left, compares the predicted (dashed) speedups against the
actual (solid) speedups. The overall predicted speedup for denoise on 24 cores for the
Pipe(Farm(G), Par Map(D)) version is 19.09 versus an actual speedup of 17.79,
a 93 % accurate prediction. In the second refactoring step Pipe(G, Par Map(D)),
where the second stage of the pipeline is transformed into a parmap, the predicted
speedup is 3.73 (175 s) versus an actual speedup of 3.97 (132 s) on 24 cores. The
overall predicted speedup for sumEuler is (shown in Figure 5, in the right column)
23.88 (4.35 s), with a predicted sequential time of 104 s versus an actual sequential
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Fig. 5 Predicted (dashed) versus actual speedups (solid) for denoise(1,024) and sumEuler(10,000)

time of 179 s, a speedup of 14.6 (12.29 s) for the task farm version and 21.39 (8.38 s)
for the chunked version with a parmap. In both graphs, the speedup seems to tail off
as we add more cores. This is evident above 18 cores for the denoise and above
16 cores for the SumEuler task farm. Although more investigation is needed, we
suspect that the denoise result is a combination of a hyper-threading effect and
scheduling overheads in the Erlang VM. For the sumEuler example, the application
seems to scale well for a task farm up to 16 cores, mostly because the system has an
abundance of parallelism, with many tasks being very fine-grained. As we add more
worker processes, overall communication and synchronisation costs begin to dominate
the computation (evident through profiling). When we apply chunking, we can control
the size and quantity of tasks for each worker thread, reducing the overall amount of
parallelism, communication and synchronisation and ensuring that the granularity of
each worker is maximised but reducing load balancing.

5.4 Using Refactoring Tools for Introducing Parallelism

Using a refactoring tool to introduce parallelism in a program instead of manually
inserting the parallelism has many advantages. Refactoring helps the programmer to
program faster. Using a parallel refactoring tool to introduce skeletons instead of man-
ual insertion means that the programmer has to remember and understand less, allowing
them to concentrate on the program design. Also, if the skeleton interfaces change, a
refactoring tool can help automate the process of modifying the program to reflect the
new interfaces. Refactoring provides correctness-by-construction. A refactoring tool,
by virtue of its design, will not allow a user to break their programs. Introducing the
wrong skeleton into a program is simply disallowed, assuming the preconditions are
correct. Furthermore, the refactoring tool will only provide a list of refactorings that
are applicable to a selected portion of code, saving time and frustration. Refactoring
encourages a consistent software engineering discipline. Programmers often write a
program without thinking about future developers. They may understand their code at
the moment that they are writing it, but in a short time the code may become difficult
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to understand. Refactoring helps the programmer make their code more readable and
consistent with a particular style. This helps other programmers to read and under-
stand the skeleton code, making it more amenable for future tuning and modification.
Refactoring helps the programmer find bugs. As parallel refactoring helps improve the
understanding of algorithmic skeletons, it also helps the programmer to verify certain
assumptions they have made about the program.

6 Related Work

Program transformation has a long history, with early work in the field being described
by Partsch and Steinbruggen in 1983 [14], and Mens and Tourwé producing a survey of
refactoring tools and techniques in 2004 [15]. The first refactoring tool system was the
fold/unfold system of Burstall and Darlington [16] which was intended to transform
recursively defined functions. There has so far been only a limited amount of work
on refactoring for parallelism [17]. Hammond et al. [18] used Template Haskell [19]
with explicit cost models to derive automatic farm skeletons for Eden [20]. Unlike
the approach presented here, Template-Haskell is compile-time, meaning that the pro-
grammer cannot continue to develop and maintain his/her program after the skeleton
derivation has taken place. Other work on parallel refactoring has mostly consid-
ered loop parallelisation in Fortran [21] and Java [22]. However, these approaches
are limited to concrete structural changes (such as loop unrolling) rather than apply-
ing high-level pattern-based rewrites as we have described here. We have recently
extended HaRe, the Haskell refactorer [23], to deal with a limited number of parallel
refactorings [24]. This work allows Haskell programmers to introduce data and task
parallelism using small structural refactoring steps. However, it does not use pattern-
based rewriting or cost-based direction, as discussed here. A preliminary proposal for
a language-independent refactoring tool was presented in [25], for assisting program-
mers with introducing and tuning parallelism. However, that work focused on building
a refactoring tool supporting multiple languages and paradigms, rather than on refac-
torings that introduce and tune parallelism using algorithm skeletons, as in this paper.

Since the 1990s, the skeletons research community has been working on high-level
languages and methods for parallel programming [26–29,2,30]. A rich set of skeleton
rewriting rules has been proposed in [31–34]. When using skeleton rewriting transfor-
mations, a set of functionally equivalent programs exploiting different kinds of paral-
lelism is obtained. Cost models and evaluation methodologies have also been proposed
that can be used to determine the best of a set of equivalent parallel programs [13,34].
The methodology presented in this paper extends and builds on this and similar work
by providing refactoring tool-support supplemented by a programming methodology
that aims to make structured parallelism more accessible to a wider audience.

7 Conclusions and Future Work

This paper has described a new cost-directed refactoring approach for Erlang. The
approach builds on pluggable algorithmic skeletons for Erlang, using cost models to
derive performance information that can be used to choose among alternative paral-
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lel implementations. Benchmark results show that the cost information derived gives
good predictions of parallel performance. While our work is described in terms of
Erlang, the approach taken is generic: the refactorings demonstrate general principles
that could easily be adapted for other languages, such as Haskell and C++. In partic-
ular, the cost models can be adapted to other settings and the refactoring rules given
here are essentially generic. Our intention is that we will, in time, construct a generic
refactoring environment capable of using a common set of refactoring rules to cover
a range of different programming languages, parallel patterns and structured parallel
implementations. In future we intend to extend the range of skeletons to cover par-
allel workpools, divide-and-conquer, map-reduce, bulk synchronous parallelism and
other parallel patterns. Each of these patterns must be supported by corresponding cost
models and refactoring rules. Finally, while we are confident that the transformations
described here preserve functional correctness, we have not yet formally proved the
correctness of our refactorings. Preliminary work on proving refactorings has been
undertaken by Li and Thompson [35]. While there are complications concerning par-
allel and concurrent execution, we anticipate that their approach could be adapted to
the setting described here.
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