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ABSTRACT

This paper presents Checked C, an extension to C designed to
support spatial safety, implemented in Clang and LLVM. Checked
C’s design is distinguished by its focus on backward-compatibility,
developer usability, and enabling highly performant code. Like past
approaches to a safer C, Checked C employs a form of checked
pointer whose accesses can be statically or dynamically verified.
Performance evaluation on a set of standard benchmark programs
shows overheads to be relatively low. More interestingly, Checked
C introduces the notion of a checked region. Inspired by the blame
theorem from gradual typing, checked regions can be held blameless
as the source of a violation, meaning it must have arisen from
unchecked code. We formalize and prove this property. To assist
programmers in migrating legacy code to checked C, we have
implemented a rewriting tool that introduces the use of checked
pointers, where safe. Experiments on several legacy programs show
it to be fast and effective.

1 INTRODUCTION

Vulnerabilities that compromise memory safety are at the heart of
many devastating attacks. Memory safety has two aspects. Temporal
safety is ensured whenmemory is never used after it is freed. Spatial
safety is ensured when any pointer dereference is always within
the memory allocated to that pointer. Buffer overruns—a spatial
safety violation—still constitute a frequent and pernicious source
of vulnerability, despite their long history. During the period 2012–
2016, buffer overruns were the source of 9.7% to 18.4% of CVEs
reported in the NIST vulnerability database [37], with the highest
numbers occurring in 2016. During that time, buffer overruns were
the leading single cause of CVEs.

Spatial safety violations commonly arise when programming
low-level, performance critical code in C and C++.While a type-safe
language disallows such violations [49], using one is impractical
when low-level control and high performance are needed. Building
on research from projects such as Cyclone [27] and Deputy [57],
modern languages like Rust [43] and Go [21] provide a promis-
ing balance of safety and performance, but to use them requires
programmer retraining and extensive rewrites of legacy code.

As discussed in depth in Section 6, several efforts have attempted
to make C programs safe. Static analysis tools [2, 6, 30] aim to find
vulnerabilities pre-deployment, but may miss bugs, have trouble
scaling, or emit too many alarms. Security mitigations, such as
CFI [1] and DEP, can mute the impact of vulnerabilities by making
them harder to exploit, but provide no guarantee; e.g., data leaks and
mimicry attacks may still be possible. Several efforts have aimed

to provide spatial safety by adding run-time checks; these include
CCured [35], Softbound [34], and ASAN [45]. The added checks can
add substantial overhead and can complicate interoperability with
legacy code if pointer representations are changed. Lower overhead
can be achieved by reducing safety, e.g., by checking only writes,
or ignoring overruns within a memory region (e.g., from one stack
variable to another, or one struct field to another). In the end, no
existing approach is completely satisfying.

This paper presents a new effort towards achieving a spatially-
safe C that we call Checked C. Checked C borrows many ideas
from prior safe-C efforts but ultimately differs in that its design
focuses on interoperability, developer usability, and enabling highly
performant code. Checked C and legacy C can coexist, so developers
are able to port legacy code incrementally. This approach does
allow for defects and vulnerabilities in non-converted regions of
the program. However, taking inspiration from recent work on
gradual typing [31, 46, 53], Checked C gives developers a way to
distinguish “checked” from “unchecked” regions. The former can
be held blameless as the source of any safety violation, and thus
software assurance attention can be focused on the latter.

Technically speaking, Checked C’s design has three key features.
First, all pointers in Checked C are represented as in normal C—no
changes to pointer format are imposed. This eases interoperability.

Second, the legal boundaries of pointed-to memory are speci-
fied explicitly; the goal here is to enhance human readability and
maintainability while supporting efficient compilation and running
times. As an example, consider the following code declarations:

size_t dst_count;

_Array_ptr <char > dst : count(dst_count);

The _Array_ptr<char> type is a Checked C type for a bounds-
checked array, and the count annotation indicates how the bounds
should be computed. In this case dst’s bounds are stored in the
variable dst_count, but other specifications, such as pointer ranges,
are also possible. Checked C also has a _Ptr<T> type for pointers to
single T values. Checked type information is used by the compiler
to either prove that an access is safe, or else to insert a bounds
check when such a proof is too difficult. Programmers can also use
annotations to help the compiler safely avoid adding unnecessary
checks in performance-critical code.

Finally, Checked C supports the concept of designated checked
regions of code. Within these regions, usage of unchecked pointers
is severely restricted, and casts to checked pointers are disallowed.
These restrictions, along with the above-mentioned checks, ensure
that execution within the checked region is spatially safe: no failure
will occur within the region assuming its checked pointers are well
formed (i.e., they have not been corrupted through prior execution
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of unchecked code). In short, in the parlance of gradual typing,
“checked code cannot be blamed” [53] for a spatial safety violation.
We formalize and prove this property.

Several prior efforts have eschewed annotations, citing the pro-
grammer cost of adding them to legacy code. However, in our
experience programmers have a sense of the extents and invariants
of memory objects and prefer to document and enforce them, but C
gives them no easy mechanism to write them down. Still, program-
mers probably do not have the time or fortitude to convert their
entire program, all at once, to use new language features or annota-
tions. As such, Checked C employs an automated tool to partially
rewrite a legacy application to use Checked C types. We believe
this approach strikes the right balance: A best-effort analysis can be
applied to the whole program to assist in porting, but once ported, a
program’s annotations ensure efficient checking and assist readabil-
ity and maintainability. The rewriter uses a global, path-insensitive
unification-based algorithm to infer when variables, structure fields,
function parameters, and function return values might be converted
to Checked C _Ptr<T> and _Array_ptr<T> types. It automatically
rewrites the program to add the former types, and points to loca-
tions for the latter, at which the programmer can convert them by
hand, adding needed bounds expressions.

Contributions. This paper makes four main contributions.
First, in Section 2, we present Checked C’s design and its ratio-

nale, introducing its various features by example.
Second, in Section 3, we formalize the core ideas in the design

of Checked C in a core calculus called CoreChkC. We show that,
in the style of gradual typing, any misbehavior can be blamed on
unchecked code—either it will misbehave directly, or could induce
misbehavior in checked code.

Third, as described in Section 4, we have implemented Checked
C as an extension to Clang and LLVM. Since Checked C is a back-
wards compatible superset of C, any project that compiles today
with Clang and LLVM can compile with Checked C. Using a stan-
dard benchmark suite we show that Checked C’s compiler imposes
little cost to either compilation time or running time. Using the
standard Olden and Ptrdist benchmark suites, we find run-time
slowdown is on average 8.4% and compile-time slowdown is on
average 16.2%. We find that after conversion, on average only 10.5%
of the benchmark code remains in unchecked regions.

Finally, as described in Section 5 we have implemented a tool to
automatically convert existing C programs to Checked C programs.
This tool performs a whole-program, context- and flow-insensitive
analysis to identify types that can be replaced with Checked C types,
and automatically rewrites them. In about 15 minutes of work the
rewriter was able to replace between 23% and 42% of C pointer
types with _Ptr<T> types in six benchmark programs, comprising
more than 290KLOC.

Checked C is under active and ongoing development. It is avail-
able as open source software on the Internet at https://github.com/
Microsoft/checkedc.

2 CHECKED C DESIGN

This section presents an overview of Checked C’s main features,
by example.

void read_next(int *b, int idx , _Ptr <int >out) {

int tmp = *(b+idx);

*out = tmp;

}

Figure 1: Example use of _Ptr<T>

2.1 Basics

The Checked C extension extends the C language with two addi-
tional checked pointer types: _Ptr<T> and _Array_ptr<T>.1 The
_Ptr<T> type indicates a pointer that is used for dereference only
and has no arithmetic performed on it, while _Array_ptr<T> sup-
ports arithmetic with bounds declarations provided in the type. The
compiler statically or dynamically confirms that checked pointers
are valid when they are dereferenced. In blocks or functions specif-
ically designated as checked code, it imposes stronger restrictions
to uses of unchecked pointers that could corrupt checked pointers,
e.g., via aliases. We would expect a Checked C program to involve
a mixed of both checked and unchecked code, and a mix of checked
and unchecked pointer types.

2.2 Simple pointers

Using _Ptr<T> is straightforward: any pointer to an object that
is only referenced indirectly, without any arithmetic or array sub-
script operations, can be replaced with a _Ptr<T>. For example, one
frequent idiom in C programs is an out parameter, used to indicate
an object found or initialized during parsing. Figure 1 shows using
a _Ptr<int> for the out parameter. When this function is called,
the compiler will confirm that it is given a valid pointer, or null.
Within the function, the compiler will insert a null check before
writing to out. Such null checks are elided when the compiler can
prove they are unnecessary.

2.3 Arrays

The _Array_ptr<T> type identifies a pointer to an array of val-
ues. Prior safe-C efforts sometimes involve the use of fat pointers,
which consist both of the actual pointer and information about the
bounds of pointed-to memory. Rather than changing the run-time
representation of a pointer in order to support bounds checking,
in Checked C the programmer associates a bounds expression with
each _Array_ptr<T> type to indicate where the bounds are stored.
The compiler proves that indexing an _Array_ptr<T> is safe or else
inserts a run-time check that does so. Bounds expressions consist of
non-modifying C expressions and can involve variables, parameters,
and structure field members.

Figure 2 shows using _Array_ptr<T> with declared bounds as
parameters to a function. In particular, the types of the dst and src

arrays have bound expressions that refer to the function’s other two
respective parameters. (On struct members, bounds declarations
may refer to the same struct’s fields.) In the body of the function,
both src and dst are accessed as expected, but potentially could re-
sult in additional compiler-inserted dynamic checks. Checks on src

are elided because the compiler can prove that i ≤ src_count, the
size of src. Checks on dst are elided thanks to the _Dynamic_check

1We use the C++ style syntax for programmer familiarity, and precede the names with
an underscore to avoid parsing conflicts in legacy libraries.
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void append(

_Array_ptr <char > dst : count(dst_count),

_Array_ptr <char > src : count(src_count),

size_t dst_count , size_t src_count)

{

_Dynamic_check(src_count <= dst_count);

for (size_t i = 0; i < src_count; i++) {

if (src[i] == '\0') {

break;

}

dst[i] = src[i];

}

}

Figure 2: Example use of _Array_ptr<T>

placed outside the loop. Like an assert, this predicate evaluates the
given condition and signals a run-time error if the condition is false;
unlike assert, this predicate is not removed unless proven redun-
dant. Here, its existence assures the compiler that i ≤ dst_count

(transitively), so no per-iteration checks are needed.
There are two other ways to specify array bounds. The first is

a range, specified by base and bounds pointers. For example, the
bounds expression on dst from Figure 2 could have been written
bounds(dst,dst+dst_count) instead. The second is an alternative
to count called bytecount, which can be applied to either void* or
_Array_ptr<void> types. A bytecount(n) expression applied to a
pointer p would be equivalent to the range p through (char *)p+n.
An example of this is given at the end of this section.

Note that we can also annotate an array declaration as _Checked,
any auto-promoted address to that array is treated as a checked
_Array_ptr<T>. We also add a restriction that all inner dimensions
of checked arrays also be checked. If inner dimensions could be
unchecked, then mistakes indexing this array would not be caught.
We see both of these situations in Figure 3, shortly.

2.4 Checked and unchecked regions

The safety provided by checked pointers can be thwarted by unsafe
operations, such as writes to traditional pointers. For example,
consider a variation of the code in Figure 1 shown below:

void more(int *b, int idx , _Ptr <int *>out) {

int oldidx = idx , c;

do {

c = readvalue ();

b[idx ++] = c;

} while (c != 0);

*out = b+idx -oldidx;

}

This function repeatedly reads an input value into b until a 0 is read,
at which point it returns an updated b pointer via the checked out

parameter. While we might expect that writing to out is safe, since
it is a checked pointer, it will not be safe if the loop overflows b and
in the process modifies out to point to invalid memory.

In a program with a mix of checked and unchecked pointers
we cannot and should not expect complete safety. However, we
would like to provide some assurance about which code is possibly

void foo(int *out) {

_Ptr <int > ptrout;

if (out != (int *)0) {

ptrout = (_Ptr <int >)out; // cast OK

} else { return; }

_Checked {

int b _Checked [5][5];

for (int i = 0; i < 5; i++) {

for (int j = 0; j < 5; j++) {

b[i][j] = -1; // access safe

} }

*ptrout = b[0][0];

}

}

Figure 3: Example _Checked block, and _Checked array

dangerous, i.e., whether it could be the source of a safety violation.
Code review and other efforts can then focus on that code. For this
purpose Checked C provides checked regions of code. Such code
is designated specifically at the level of a file (using a pragma), a
function (by annotating its prototype), or a single block (by labeling
that block, similar to an asm block).

An example checked block is shown in Figure 3. Outside of the
_Checked-annotated region, unchecked code casts an unchecked
pointer to a checked one; this cast is a potential source of prob-
lems (if out was bogus) and so would not be permitted in checked
code. Within the checked block, checked pointers declared inside
and outside the block can be freely manipulated and the compiler
performs the expected checks. The compiler also treats uses of the
address-of operator & in a checked block as producing a checked
pointer, not an unchecked one. When doing this to a struct field,
the bounds are defined as the extent of that field.

In general, within a checked region both null and bounds checks
on checked pointers are employed as usual, but additional restric-
tions are also imposed. In particular, explicit casts to checked pointer
types are disallowed, as are reads from and writes to unchecked
pointers. Checked regions may neither use varargs nor K&R-style
prototypes. All of these restrictions are meant to ensure that the
entire execution of a checked region is spatially safe. This means
that assuming checked pointers have been constructed properly
(in particular, they have not been corrupted due to the execution
of unchecked code prior to entering the checked region), no safety
violations will occur due to dereferencing a pointer into illegal
memory. Section 3 makes this guarantee precise, and proves that it
holds.2

Checked C also permits ascribing checked types to unchecked
functions. This is particularly useful for checking interactions with
legacy libraries. As an example, the type we give to the fwrite

standard library function is shown in Figure 4. The first argument
to the function is the target buffer whose size (in bytes) is given
by the second and third arguments. The final argument is a FILE

pointer whose type depends on whether it is being called from

2To be precise, Checked C’s implementation goes further than what is strictly needed
for safety and forbids the use unchecked pointers anywhere in checked blocks, even
when they are not dereferenced. This is intended to encourage programmers to make
all of a region checked.
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size_t fwrite(

const void * pointer : byte_count(size*nmemb),

size_t size , size_t nmemb ,

FILE * stream : itype(_Ptr <FILE >));

Figure 4: Standard library checked interface

checked or unchecked code. For the latter, the type is given by the
itype annotation, indicating it is expected to be a checked pointer.
For the former, it is the “normal” type of the argument.

2.5 Restrictions and Limitations

Checked C’s design is a work in progress and currently imposes
several restrictions that we hope to relax in the near future.

First, to ensure that checked pointers are valid by construction,
we require that checked pointer variables be initialized when they
are declared. In addition, heap-allocated memory that contains
checked pointers (like a struct or array of checked pointers) must
use calloc so that heap-resident pointers are initialized. We plan
to employ something akin to Java’s definite initialization analysis
to relax this requirement, at least somewhat.

Second, _Array_ptr<T> values can be dereferenced following
essentially arbitrary arithmetic; e.g., if x is an _Array_ptr<int>
we could dereference it via *(x+y-n+1) and the compiler will insert
any needed checks to ensure the access is legal. However, updates
to _Array_ptr<T> values are currently more limited. For example,
we might like to replace the loop in Figure 2 with the following:

for (size_t i = 0; i < src_count; i++) {

if (*src == '\0') {

break;

}

*dst = *src;

src ++; dst++;

}

The problem is that the bounds declared for src are tantamount
to the range (src,src+src_count), which would mean that updating
src to src+1 would invalidate them, as the upper bound would be
off by one. In the meantime, this sort of arithmetic would be allowed
by assigning src and dst to temporary variables; updating these
variables would be OK because the bounds would be in terms of src
and dst, which would remain invariant. We are working to support
flow-sensitive bounds so that, in this case, the update src++ would
update the bounds to (src,src+src_count-i).

Third, Checked C lacks support for checked, zero-terminated
arrays. Ideally we would like the bounds to be specified as the
(dynamic) location of a zero terminator. For now, the programmer
must alias the pointer and use strlen to compute a bound.

Finally, some elements of our static analysis for confirming safe
usage are designed but not fully implemented or tested. We elabo-
rate on these in Section 4.

3 FORMALISM: CORECHKC

This section presents a formal language CoreChkC that models the
essence of Checked C. The language is designed to be simple but
nevertheless highlight Checked C’s key features: checked pointers;
checked code blocks, which are prevented from using unchecked

Mode m ::= c | u
Word types τ ::= int | ptrmω
Types ω ::= τ | struct T | array n τ
Expressions e ::= nτ | x | let x = e1 in e2

| malloc@ω | (τ )e
| e1 + e2 | &e→f
| ∗e | ∗e1 = e2 | unchecked e

Structdefs D ∈ T ⇀ f s

Figure 5: CoreChkC Syntax

pointers and certain casts; and unchecked code blocks, which may
manipulate pointers as they wish. After presenting the syntax,
semantics, and type system of CoreChkC, we state and prove its
key guarantee: Checked code preserves well-typing, which ensures
well-defined behavior, while any observed undefined behavior can
be blamed on unchecked code.

3.1 Syntax

The syntax of CoreChkC is presented in Figure 5. Types τ classify
word-sized objects while types ω also include multi-word objects.
The type ptrmω types a pointer, wherem identifies itsmode: mode
c identifies a Checked C safe pointer, while mode u represents
an unchecked pointer. In other words ptrcτ is a checked pointer
type _Ptr<τ> while ptruτ is an unchecked pointer type τ*. Multi-
word types ω include struct records, and arrays of type τ having
size n, i.e., ptrcarray n τ represents a checked array pointer type
_Array_ptr<τ> with bounds n. We assume structs are defined
separately in a map D from struct names to their constituent field
definitions.

Programs are represented as expressions e ; we have no separate
class of program statements, for simplicity. Expressions include
integers nτ , local variables x , which are introduced by let-bindings
let x = e1 in e2; there is no type annotation on variable x because
it can be inferred from context. Constant integers n are annotated
with type τ to indicate their intended type is. As in an actual imple-
mentation, pointers in our formalism are represented as integers.
Annotations help formalize type checking and the safety property
it provides; they have no effect on the semantics except when τ is
a checked pointer, in which case they facilitate null and bounds
checks. Local variables can only hold word-sized objects, so all
structs can only be accessed by pointers.

Checked pointers are constructed using malloc@ω; for simplic-
ity, we do not consider numeric arguments to malloc, but just
include the type. Thus, malloc@int produces a pointer of type
ptrcint while malloc@(array 10 int) produces a pointer of type
ptrc (array 10 int). Unchecked pointers can only be produced by
the cast operator, (τ )e , e.g., by doing (ptruint)malloc@int. Casts
can also be used to coerce between integer and pointer types and
between different multi-word types.

Pointers are read via the ∗ operator, and assigned to use the =
operator. To read or write struct fields, a program can take the
address of that field and read or write that address, e.g., x→f is
equivalent to ∗(&x→f ). To read or write an array, the programmer
can use pointer arithmetic to access the desired element, e.g., x[i]
is equivalent to ∗(x + i).
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Heap H ∈ Z⇀ Z × τ
Result r ::= e | Null | Bounds
Contexts E ::= _ | let x = E in e

| E + e | n + E
| &E→f | (τ )E
| ∗E | ∗E = e | ∗n =E
| unchecked E

Fields f s ::= τ f | τ f; f s

Figure 6: Semantics Definitions

By default, CoreChkC expressions are assumed to be checked.
Expression e in unchecked e is unchecked, giving it additional
freedom. From T-Cast we can see that casting to checked pointers
is only permitted in unchecked code. Doing so permits accessing
the contents of memory in essentially arbitrary ways. Unchecked
pointers may only be read or written in unchecked mode.

Design Notes. CoreChkC leaves out many interesting C lan-
guage features. We do not include an operation for freeing memory,
since this paper is concerned about spatial safety, not temporal
safety. CoreChkC models statically sized arrays but supports dy-
namic indexes; supporting dynamic sizes is interesting but less
important compared to the complexity it adds the formalism. We
do not model control operators or function calls, whose addition
would be straightforward. Function calls f (e ′) can be modeled by
let x = e ′ in e , where we can view x as function f ’s parameter,
e as its body, and e ′ as its actual argument. Calls to unchecked
functions from checked code can thus be simulated by having an
unchecked e expression for e2. We chose to make checked mode
the default in the formalism, but making it unchecked would have
been equally easy. We do not have a corresponding checked e ex-
pression to embed within an unchecked one; this could also be
handled straightforwardly, with the effect of passing data affected
by unchecked code to checked code modeled by the value returned
from unchecked e .

3.2 Semantics

Figure 7 gives a small-step operational semantics for Checked C
expressions, defining judgment H ; e −→m H ; r . Here, as shown in
Figure 6, H is a heap, which is a partial map from integers (repre-
senting pointer addresses) to type-annotated integers nτ .m is the
mode of evaluation, which is either c for checked mode, or u for
unchecked mode. Finally, r is a result, which is either an expression
e , Null (indicating a null pointer dereference), or Bounds (indicat-
ing an out-of-bounds array access). An unsafe program execution
occurs when the expression reaches a “stuck” state — the program
is not an integer nτ , and yet no rule applies. Notably, this could
happen if trying to dereference a pointer n that is actually invalid,
i.e., H (n) is undefined. The semantics is implicitly parameterized
by struct map D.

The semantics is defined in the standard manner using evalua-
tion contexts E, given in Figure 6. Contexts are designed to ensure
a unique decomposition of any expression e into context E and
(smaller) expression e0 that ensures a left-to-right evaluation order.
Wewrite E[e0] to mean the expression that results from substituting

e0 into the “hole” _ of context E. Rule C-Exp defines normal evalua-
tion. It decomposes an expression e into a context E and expression
e0 and then evaluates the latter via H ; e0 { H ′; e ′0 as defined in
the bulk of the figure (and discussed below). The annotationm is
the evaluation mode, which is restricted by the mode(E) function,
also given in Figure 7. The rule and this function ensure that when
evaluation occurs within e in some expression unchecked e , then
it does so in unchecked mode u; otherwise it may be in checked
mode c . Rule C-Halt halts evaluation due to a failed null or bounds
check; this works by simply discarding the outer context E, thus
terminating the program.

Rules with prefix E- define the core computation semantics, and
are fairly standard. Rule E-Binop produces an integer n3 that is the
sum of arguments n1 and n2. When n1 is a checked pointer to an
array and n2 is an int, result n3’s type annotation is annotated as
a pointer to an array with its bounds suitably updated.3 Otherwise,
n3’s type is just the same as n1’s type. E-Deref and E-Assign check
the bounds of checked array pointers: the length l must be posi-
tivefor the dereference to be legal. The rule permits the program to
proceed for non-checked or non-array pointers (but the type sys-
tem will forbid them). Rule E-Amper takes the address of a struct
field, according to the type annotation on the pointer. E-Malloc
allocates a checked pointer by finding a string of free heap loca-
tions and initializing each to 0, annotated to the appropriate type.
Here, types(D,ω) returns n types, where these are the types of the
corresponding memory words; e.g., if ω is a struct then these are
the types of its fields (looked up in D), or if ω is an array τ of length
k , then we will get back k τ ’s. E-Let uses a substitution semantics
for local variables; notation e[x 7→ nτ ] means that all occurrences
of x in e should be replaced with nτ . E-Unchecked returns the result
of an unchecked block.

Rules with prefix X- describe failures due to bounds checks and
null checks; these rules complement E-Assign and E-Deref.

3.3 Typing

Typing judgment Γ ⊢m e : τ says that expression e has type τ under
environment Γ when in mode m. Heap H and struct map D are
implicit parameters of the judgment; they are not shown because
they are invariant in proof derivations. Unchecked expressions are
always checked in mode u, otherwise we may use either mode. To
avoid clutter, the rules elide annotationm when it could be either
u or c .

Γ maps local variables x to types τ , and is used in rules T-Var and
T-Let as usual. Rule T-Int ascribes type τ to constant nτ when τ is
an integer, when it is an unchecked pointer type (so dereferencing
is only possible in unchecked code, and failure there is an option),
when n is 0 (and thus dereferencing it in checked mode would
produce Null) or it has type ptrc (array 0 τ ′) (since dereferencing
it would produce Bounds).

Rule T-PtrC ensures checked pointers of type ptrcω are con-
sistent with the heap. This works by checking that the pointed-to
memory has types consistent with ω. When doing this, we add nτ
to Γ to properly handle cyclic heap structures, per rule T-VConst. A
key feature of T-PtrC is that it effectively confirms that all pointers
reachable from the given one are consistent; it says nothing about

3Here, l − n2 is natural number arithmetic: if n2 > l then l − n2 = 0.
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E-Binop H ;nτ11 + n
τ2
2 { H ;nτ33 where n3 = n1 + n2

τ1=ptrc (array l τ ) ∧ τ2=int ⇒

τ3 = ptrc (array l ′ τ ) where l ′ = l − n2
τ3 = τ1 otherwise

E-Cast H ; (τ )nτ
′

{ H ;nτ
E-Deref H ; ∗nτ { H ;nτ11 where nτ11 = H (n)

τ = ptrc (array l τ ′) ⇒ l > 0
E-Assign H ; ∗nτ =nτ11 { H ′;nτ11 where H (n) defined

τ = ptrc (array l τ ′) ⇒ l > 0
H ′ = H [n 7→ nτ11 ]

E-Amper H ; &nτ→fi { H ;nτ00 where τ = ptrm
′

struct T
D(T ) = τ1 f1; ...;τk fk for 1 ≤ i ≤ k

n0 = n + i ∧ τ0 = ptrm
′

τi

E-Malloc H ; malloc@ω { H ′,nptr
cω

1 where
sizeof(ω) = k and n1...nk are consecutive
n1 , 0 and H (n1)...H (nk ) are undefined
τ1, ...,τk = types(D,ω)
H ′ = H [n1 7→ 0τ1 ]...[nk 7→ 0τk ]

E-Let H ; let x = nτ in e { H ; e[x 7→ nτ ]
E-Unchecked H ; unchecked nτ { H ;nτ
X-DerefOOB H ; ∗nτ { H ; Bounds where τ = ptrc (array 0 τ1)
X-AssignOOB H ; ∗nτ =nτ11 { H ; Bounds where τ = ptrc (array 0 τ1)
X-DerefNull H ; ∗0τ { H ; Null where τ = ptrcω

X-AssignNull H ; ∗0τ =nτ
′

{ H ; Null where τ = ptrcω

C-Exp
e = E[e0] m = mode(E) ∨m = u

H ; e0 { H ′; e ′0 e ′ = E[e ′0]

H ; e −→m H ′; e ′

C-Halt
e = E[e0] m = mode(E) ∨m = u

H ; e0 { H ′; r where r = Null or r = Bounds

H ; e −→m H ′; r

mode(_) = c
mode(unchecked E) = u
mode(let x = E in e) =

mode(E + e) =

mode(n + E) =

mode(&E→f ) =

mode((τ )E) =

mode(∗E) =

mode(∗E = e) =

mode(∗n =E) = mode(E)

Figure 7: Semantics

other parts of the heap. For example, if some set of checked pointers
is only reachable via unchecked pointers then we are not concerned
whether the former are consistent, since they cannot be accessed
(directly) from checked pointers.

Rules T-Amper and T-Let are unsurprising. Rule T-BinopInt types
addition of integers. Rule T-Malloc produces checked pointers. Rule
T-Unchecked introduces unchecked mode, relaxing access rules.
Rule T-Cast enforces that checked pointers cannot be cast targets
in checked mode.

Rules T-Deref and T-Assign type pointer accesses. These rules re-
quire unchecked pointers only be dereferenced in unchecked mode.
Rule T-Index permits reading a computed pointer to an array, and
rule T-IndAssign permits writing to one. These rules are not strong
enough to permit updating a pointer to an array after performing
arithmetic on it. (This limitation can be overcome in unchecked
code by casting the array to an int, adjusting the pointer, and then
casting it back.)

3.4 Metatheory

Our goal is to show that well-typed programs will never fail due
to a spatial safety violation so long as unchecked code completes
its execution leaving the program in a well-formed state. In effect,
any failure can be blamed on unchecked code. Our main result is
formalized as two lemmas.

The first lemma, Progress, indicates that a well-typed program
either is a value, can take a step (in either mode), or else is stuck
(cannot evaluate) in unchecked code. The latter is true if e only
type checks in mode u, or its (unique) context E has mode u.

Lemma 3.1 (Progress). If · ⊢m e : τ (under heap H ) then one of
the following holds:

• e is an integer nτ

• There exists H ′,m′, and r such that H ; e −→m′

H ′; r where
r is either some e ′, Null, or Bounds.

• m = u or e = E[e ′′] and mode(E) = u for some E and e ′′.
6



T-Var
x : τ ∈ Γ

Γ ⊢ x : τ

T-VConst
nτ ∈ Γ

Γ ⊢ nτ : τ

T-Let
Γ ⊢ e1 : τ1

Γ,x : τ1 ⊢ e2 : τ
Γ ⊢ let x = e1 in e2 : τ

T-Int
τ = int ∨ τ = ptruω ∨

n = 0∨
τ = ptrc (array 0 τ ′)

Γ ⊢ nτ : τ

T-PtrC
τ = ptrcω

τ0, ...,τj−1 = types(D,ω)
Γ,nτ ⊢ H (n + k) : τk 0 ≤ k < j

Γ ⊢ nτ : τ

T-Amper
Γ ⊢ e : ptrmstruct T
D(T ) = ...;τf f ; ...

Γ ⊢ &e→f : ptrmτf

T-BinopInt
Γ ⊢ e1 : int
Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int

T-Malloc

Γ ⊢ malloc@ω : ptrcω

T-Unchecked
Γ ⊢u e : τ

Γ ⊢ unchecked e : τ

T-Cast
m = c ⇒ τ , ptrcω (for any ω)

Γ ⊢m e : τ ′

Γ ⊢m (τ )e : τ

T-Deref
Γ ⊢m e : ptrm

′

ω
ω = τ ∨ ω = array n τ

m′ = u ⇒m = u

Γ ⊢m ∗e : τ

T-Index
Γ ⊢m e1 : ptrm

′

(array n τ )
Γ ⊢m e2 : int

m′ = u ⇒m = u

Γ ⊢m ∗(e1 + e2) : τ

T-Assign
Γ ⊢m e1 : ptrm

′

ω
Γ ⊢m e2 : τ

ω = τ ∨ ω = array n τ
m′ = u ⇒m = u

Γ ⊢m ∗e1 = e2 : τ

T-IndAssign
Γ ⊢m e1 : ptrm

′

(array n τ )
Γ ⊢m e2 : int
Γ ⊢m e3 : τ

m′ = u ⇒m = u

Γ ⊢m ∗(e1 + e2)= e3 : τ

Figure 8: Typing judgment

The second lemma, Preservation, implies that if a well-typed
program takes a step in checked mode then the resulting program
is also well-typed.

Lemma 3.2 (Preservation). If Γ ⊢m e : τ (under a heap H ), and
⊢ Γ, and H ; e −→m′

H ′; r (for some H ′,m′, r ), then m′ = c and
r = e ′ implies H ′ ⊢ H and Γ ⊢m e ′ : τ (under heap H ′).

Here wewrite ⊢ Γ to mean ∄nτ ∈ Γ, i.e., Γ just contains mappings
of variables to types. We write H ′ ⊢ H to mean that for all i , if
H (i) = nτ such that · ⊢ nτ : τ under H then there exists n′ such
that H ′(i) = n′τ where · ⊢ n′τ : τ under H ′. This says that H ′

basically agrees with H on the types of its well-defined locations.
The proofs of both lemmas are by induction on the typing deriva-

tion. The most delicate aspect of the proofs is ensuring that modi-
fications to checked pointers in the heap preserve typing, despite
the creation or modification of cyclic data structures.

Putting these two lemmas together guarantees that a well-typed
program (that is not a value) can always take a step when in checked

code, and when it does so the result is a well-typed program, or
else it will fail gracefully due to a null or bounds check. Evaluating
in unchecked code provides no guarantee. A well-typed program
could fail in unchecked mode due to an attempt to dereference an
unchecked pointer that points to undefined memory. Or, a well-
typed program could take a step in unchecked mode that constructs
a bogus checked pointer (e.g., that points to undefined memory),
and thus fails to type check. A corollary of these observations is
that if the program’s evaluation is consistently well-typed (i.e., no
bogus checked pointers are created at any point) the only possible
failures (i.e., due to a stuck program) will be in unchecked code. In
any case, if an unchecked block completes in a well-typed state,
then checked code execution from thereon will be safe.

These results can be related to the blame theorem in the gradual
typing literature [31, 46, 53]. In particular, the theorem “well-typed
code can’t be blamed” [53] indicates that the statically typed part
of a mixed-typing program can always execute without error; only
corruption by or execution of the dynamically typed component
can produce a failure. For Checked C, the same situation holds,
respectively, for checked and unchecked code.

4 IMPLEMENTATION

We have implemented Checked C as an extension to the Clang/L-
LVM compiler. This section describes the various changes we made.
It also presents an evaluation of Checked C on a suite of standard
benchmarks. We count the source code changes required to make
these benchmarks checked, and measure the corresponding over-
head to both compilation time and running time.

4.1 Compiler Implementation

The Clang and LLVM toolchain is organized with Clang being the
C or C++ frontend that produces an assembly-like IR for LLVM, the
backend. LLVM contains most of the analyses and optimizers.

We extended the C grammar [26] to support bounds declarations,
the new _Ptr<T>, _Array_ptr<T>, and T _Checked[N] types, and
adding _Checked or _Unchecked annotations to blocks and func-
tions. We chose reserved identifiers so that they will not conflict
with identifiers in existing code.

We include a set of checked headers which ascribe checked types
and bounds to functions in the C standard library. These are used in
Checked C programs as replacements for the standard C headers.

4.2 Type checking

In order to support Checked C’s new types, we extended Clang’s
type representation and type checker. We added a pointer kind dis-
criminator to Clang’s pointer type representation, and a “checked”
flag to Clang’s array type representation.

C includes implicit conversions to allow use of values at as-
signments, function calls, and return statements where the types
are not equal but are compatible. We additionally allow implicit
conversions from T* to _Ptr<T> in unchecked code. The reverse
is unsound, as that would not prevent performing arithmetic on
_Ptr<T>s. We also allow implicit conversions from constant-sized
unchecked arrays to constant-sized checked arrays of the same
dimensions and types. We must know the runtime size of the data
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pointed to by the unchecked pointer, which we do for address-taken
locals and local arrays.

4.3 Bounds Expressions

Checked C’s bounds expressions provide a static description of the
bounds on a pointer. We check statically that the sub-expressions
of a bounds expression are non-modifying expressions: they do not
contain any assignment, increment or decrement operators, or
function calls. This ensures that using the expressions at bounds
checks does not cause unexpected side-effects.

We extended Clang’s representation of variable, member, and
function declarations to support adding bounds expressions, as well
as related concepts such as redeclarations and type compatibility.

We extended Clang’s representation of function types to repre-
sent the bounds expressions of the parameters and the return value
in a position-agnostic way. This lets us use syntactic equivalence
of bounds expressions to verify that bounds in function types are
compatible with each other.

4.4 Bounds Inference

Checked C performs inference to compute a bounds expression
that conservatively describes the bounds on a pointer. Inference
uses bounds expressions normalized into bounds(l,u) form.

In C, expressions evaluate to either an lvalue or a value.4 Lvalues
represent the locations of objects in memory, and are used to access
memory. Integers, floats and pointers are values. The expressions
that evaluate to an lvalue are: variables; dereferences; array index-
ing; and member accesses including arrow expressions. All other
expressions evaluate to a value. Lvalue expressions are required
in the left-hand-side of assignment expressions; address-of expres-
sions; and increment or decrement expressions. Lvalue expressions
can be used where a value expression is required. In that case, if the
lvalue expression has array type, it is converted to an array pointer
value (array conversion). Otherwise, a read of memory using the
lvalue produced by the lvalue expression is inserted (which C calls
an lvalue conversion).

This means we need to infer bounds expressions for value expres-
sions, (value bounds), bounds expressions for lvalue expressions,
(lvalue bounds), and bounds expressions for the value result of an
lvalue conversion, (lvalue target bounds).

In general, the value bounds of an expression are the value
bounds of the pointer sub-expressionwith bounds; the lvalue bounds
of an expression correspond to the bounds on the storage location
of that lvalue; and the lvalue target bounds of an expression corre-
spond to the bounds declared for that lvalue.

We perform narrowing of the inferred bounds in some places
to ensure type safety. The rule is that we want to ensure that, if
a bounds check succeeds, the user got back a value of the type
they were expecting. This means that when we infer the bounds
of member expressions, we narrow to the bounds of the individual
struct member, as other struct members could have different types.

However, in the case of inner dimensions of multidimensional
checked arrays, we do not narrow in from the outermost checked
array, because every element of the array has the same type. This

4Values are more commonly called rvalues in other language descriptions.

choice prevents us from having to do lots of dynamic checks inside
array processing inner loops.

Narrowing can also be performed explicitly by the programmer
by assigning to a variable with narrower declared bounds than the
value being assigned to it.

4.5 Static Checking of Bounds Declarations

The Checked C compiler performs static checks to ensure that
bounds declarations are valid and programs do not contain improper
uses of checked pointers. One such check prevents performing
pointer arithmetic on _Ptr<T> values.

The most important static check is called the subsumption check.
This check ensures that when assigning to an lvalue expression
with checked array pointer type, we infer the bounds for both sub-
expressions, and then check the bounds of the value imply the
bounds of the lvalue. This check allows assignment to narrow, but
not to widen, the bounds of the assigned value. This requirement
also applies at initialization and to function calls. We prove this stat-
ically so that we add no unexpected run-time overhead to variable
assignment or function calls.

This static subsumption check is not implemented yet in our
compiler. In the benchmarks below, we used a set of simpler, un-
sound checks to catch trivial errors and manual code review to
ensure this subsumption property holds.

4.6 Run-time Checks

The Checked C compiler inserts run-time checks into the evaluation
of lvalue expressions that will access memory through a checked
pointer. The code for these checks is handed to LLVM, which we
allow to remove checks if it can prove they will always pass. In
general, such checks are the only source of Checked C overhead
(aside from programmer use of _Dynamic_check).

Before any _Ptr<T> accesses the compiler inserts a check that
the pointer is non-null. Before any _Array_ptr<T> accesses the
compiler inserts a non-null check followed by the required bounds
check computed from the inferred bounds. The compiler does not
perform any range checks during pointer arithmetic, unless the
arithmetic accesses memory.

In some cases, such as a nested dereference expression like **p,
we may have to emit more than one set of dynamic checks: the
first for the outer pointer dereference and another for the inner
pointer dereference. Similarly, these checks can be emitted during
the calculation of the upper or lower bounds for a bounds check.

4.7 Evaluation

We converted small existing benchmarks from C as an initial eval-
uation of the consequences of porting code to Checked C, includ-
ing evaluating both the changes required for the code to become
checked, and the performance overhead of the run-time checks.

We chose 10 benchmarks from the Olden [42] and Ptrdist [4]
benchmark suites, because these are suites specifically designed to
test pointer-intensive applications, and they are the same bench-
marks used to evaluate both Deputy and CCured. We chose to
use only the benchmarks that were under 1 KLOC. We omitted
bh and voroni from Olden and bc, ft, and yacr2 from Ptrdist. The
benchmarks used are described in Table 1.
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Name LOC Description

bisort 350 Sorts using two disjoint bitonic sequences
em3d 688 Simulates electromagnetic waves in 3D
health 504 Simulates Columbian health-care system
mst 428 Computes minimum spanning tre
perimeter 484 Computes perimeter of a set of quad-tree

encoded images
power 622 The Power System Optimization problem
treadd 245 Computes the sum of values in a tree
tsp 582 Estimates solution for the Traveling-

salesman problem
anagram 657 Generates anagrams from a list of words
ks 783 Schweikert-Kernighan graph partitioning

Table 1: Compiler Benchmarks. Top group is the Olden suite,

bottom group is the Ptrdist suite. LOC includes all com-

ments and blank lines in benchmark source files. Descrip-

tions are from [4, 42].

Code Changes Observed Overheads

Name LM % EM % LU % RT ±% CT ±% ES ±%
bisort 16.0 85.3 5.7 + 0.1 - 1.3 + 6.1
em3d 25.3 65.6 12.0 + 43.0 + 11.0 + 0.7
health 15.7 97.8 8.7 + 7.1 + 10.0 - 1.6
mst 27.6 75.3 15.9 + 0.4 - 0.2 - 16.6
perimeter 9.9 93.2 5.6 - 0.1 + 0.4 + 0.8
power 12.2 70.1 6.6 0.0 + 16.7 + 6.0
treeadd 14.7 92.9 13.5 + 2.2 + 49.9 + 7.0
tsp 8.2 95.2 15.3 0.0 + 38.0 + 1.1
anagram 16.1 77.5 11.7 + 32.8 + 28.6 + 27.5
ks 10.7 93.9 21.0 + 7.0 + 20.3 + 21.5

Mean: 14.6 83.9 10.5 + 8.4 + 16.2 + 4.6
Table 2: Benchmark Results. Key: LM %: Percentage of

Source LOC Modified, including Additions; EM %: Percent-
age of Code Modifications deemed to be Easy (see 4.7.1);

LU %: Percentage of Lines remaining Unchecked;RT±%: Per-
centage Change in Run Time; CT ±%: Percentage Change in
Compile Time; ES ±%: Percentage Change in Executable Size

(.text section only). Mean: Geometric Mean.

We evaluate Checked C using these benchmarks in two ways.
First, we quantify the number and type of source code changes
required to convert these benchmarks from C to Checked C. Second,
we quantify the overhead of the run-time checks on benchmark
run time, compile time, and executable size. The evaluation results
are presented in Table 2.

We ran these benchmarks on a 12-Core Intel XeonX5650 2.66GHz,
with 24GB of RAM, running Red Hat Enterprise Linux 6. All com-
pilation and benchmarking was done without parallelism. We ran
each benchmark 100 times with and without the Checked C changes
using the test sizes from the LLVM benchmarks. We averaged the
100 runs and compared the arithmetic means.

4.7.1 Code Changes. On average, the changes modified around
15% of benchmark lines of code. Most of these changes were in
declarations, initializers, and type definitions rather than in the

program logic. In the evaluation of Deputy [13], the reported fig-
ure of lines changed ranges between 0.5% and 11% for the same
benchmarks, showing they have a lower annotation burden than
Checked C.

We modified the benchmarks to use checked blocks and the top-
level checked pragma. We placed code that could not be checked
because it used unchecked ponters in unchecked blocks. On average,
about 10.5% of the code remained unchecked after conversion, with
a minimum and maximum of 5.7% and 21%. The causes were almost
entirely the use of strings and variable argument functions for
printing.

We manually inspected changes and divided them into easy
changes and hard changes. Easy changes include: replacing in-
cluded headers with their checked versions; converting a T* to a
_Ptr<T>; adding the _Checked keyword to an array declaration; in-
troducing a _Checked or _Unchecked region; adding an initializer;
and replacing a call to malloc with a call to calloc. Hard changes
are all other changes, including changing a T* to a _Array_ptr<T>
and adding a bounds declaration, adding structs, struct members,
and local variables to represent run-time bounds information, and
code modernization.

We distinguish between the two because we believe easy changes
can be automated (as with our automated _Ptr<T> conversion
tool in Section 5) or made unnecessary in the future by relaxing
requirements such as the additions of initializers.

In two benchmarks, em3d and mst, we had to add intermediate
structs so thatwe could represent the bounds on an _Array_ptr<T>s
nested inside arrays. In mst we also had to add a member to a
struct to represent the bounds on an _Array_ptr<T>. In the first
case, this is because we cannot represent the bounds on nested
_Array_ptr<T>s, in the second case this is because we only allow
bounds on members to reference other members in the same struct.
In em3d and anagram we also added local temporary variables to
represent bounds information.

In all of our benchmarks, we found the majority of changes were
easy. In six of the benchmarks, the only hard changes were adding
bounds annotations relating to the parameters of main.

4.7.2 Observed Overheads. An important concern about run-
time checking for C is the effect on performance and compile time.
The average run-time overhead introduced by adding dynamic
checks was 8.4%. In half of the benchmarks the overhead was less
than 1%, including one case where no overhead was added at all.
We believe this to be an acceptably low overhead that better static
analysis may reduce even further.

In all but three benchmarks, the added overhead is not more
than the overhead added by Deputy. In the outlier results, em3d
and anagram, we have 12 and 7 percentage points respectively less
overhead than Deputy. In all the benchmarks, the added overhead
is not more than the overhead reported by CCured.

On average, the compile-time overhead introduced by using
Checked C is 16.2%. The maximum overhead introduced is 50%, and
the minimum is 1% faster than compiling with C.

We also evaluated code size overhead, by looking at the change
in the size of .text section of the executable. This excludes data
that might be stripped, like debugging information. Across the
benchmarks, there is an average 5% code size overhead from the
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introduction of dynamic checks. Eight of the benchmarks have a
code size increase of less than 7%, including a reduction in code
size in two benchmarks.

4.8 Work In Progress

As we have mentioned before, the development of the compiler is
still in progress. There are three kinds of dynamic checks that we
have not yet implemented. The first is the dynamic version of our
subsumption check, performed by an explicit bounds cast operator.
The second is checking that checked pointer arithmetic is not done
on the null pointer (to prevent forging of checked pointers). The
third is checking for overflow on checked pointer arithmetic.

5 AUTOMATIC PORTING

Porting legacy code to use checked pointers and regions can be
time consuming. To assist the process, we developed a source-
to-source translation tool called checked-c-convert that discovers
safely-used pointers and rewrites them to be checked. This section
presents the design and implementation of the tool and evaluates
its effectiveness on a series of benchmark programs.

5.1 Conversion tool design and overview

checked-c-convert aims to be sound while also producing edits that
are minimal and unsurprising. A rewritten program should be rec-
ognizable by the author and it should be usable as a starting point
for both the development of new features and additional porting. A
particular challenge is to preserve syntactic structure of the pro-
gram. Previous, similar analyses have often been defined on code
produced after preprocessing. These analyses also sometimes work
by combining multiple source files into one file, prior to analysis.
These choices are problematic for us: We need to rewrite one file at
a time (perhaps taking into account whole-program knowledge),
and preserve the definition and use of macros, and other formatting,
in the source code.

The checked-c-convert tool is implemented as a clang libtooling
application that traverses the AST to generate constraints based
on pointer usage, and solves those constraints. With a solution,
the tool will rewrite some declared pointer types to be checked,
and may insert some casts. The tool operates on post-preprocessed
code, but has sufficient location information to be able to rewrite
the original source files. Moreover, for macro expansions that have
parameters, it considers all expansions of those parameters together,
so as to be able to rewrite the original macro’s definition. In effect,
this produces a context- and flow-insensitive rewriting of macros,
just as would occur for functions.

5.2 Constraint logic and solving

The basic idea of the tool is to infer a qualifier qi for each defined
pointer variable i . Inspired by the approach taken by CCured [35],
qualifiers can be either PTR, ARR and UNK , which are organized
as a lattice (PTR is the lowest,UNK is the highest). Those variables
with inferred qualifier PTR can be rewritten into _Ptr<T> types,
while those withUNK are left as is. Those with the ARR qualifier
are eligible to have _Array_ptr<T> type. For the moment we only
signal this fact in a comment and do not rewrite because we cannot
always infer proper bounds expressions. In addition to local and

global variables, constraint variables are associated with individ-
ual struct fields, return values from functions, and parameters to
functions, assuming each contain a pointer. Constraint variables
for return values and parameters are globally unique, so no calling
context being considered when analyzing constraints on functions.

Qualifiers are determined based on constraints introduced based
on how pointer variables are used. Constraints are written in a sim-
ple logic that can express equality, inequality, and implication, and
represent flow and path insensitive program facts and are solved
using a unification based algorithm. They are generated over the
whole program, to include multiple compilation units and header
files, potentially including system header files. An expression that
performs arithmetic on a pointer value, either via + or [], intro-
duces a constraint on that pointer value qi = ARR. Assignments
between pointers introduce aliasing constraints of the form qi = qj .
Existing Checked C annotations introduce negation constraints
to fix a constraint variable to the constraint represented by the
Checked C type. Casts introduce implication constraints based on
the relationship between the sizes of the two types. If the sizes are
not comparable, then both constraint variables in an assignment
based cast are constrained toUNK via an equality constraint. Con-
straints are generated for each file individually, at first. Then these
constraints are “linked” together when it can be determined that
they refer to the same global definition. Once all constraints are
connected they are solved, producing a final assignment of quali-
fiers to variables. After solving, the individual files are rewritten
according to their solutions. If a conflict arises due to an equality
constraint between any variable and the parameter to the free
function, an explicit cast is inserted.

Turning to the question of solving, the algorithm resembles the
approach taken by CCured. Generated constraints are limited to be
of one of the following forms:

(1) qi = PTR | ARR | UNK | qj
(2) ¬(qi = PTR | ARR | UNK)
(3) qi = ARR −→ qj = ARR
(4) qi = UNK −→ qj = UNK

During solving, each constraint variable begins with an initial
value of PTR. Solving this system of constraints works iteratively
by propagating aliasing and equality constraints toUNK first, then
aliasing, equality and implication constraints involvingUNK , then
aliasing, implication and equality constraints toARR. The constraint
language differs slightly from CCured due to the modular nature of
Checked C: an existing portion of the program could specify that
a variable is a _Ptr<T> and checked-c-convert should not regress
the program, so it is not always acceptable to constrain variables to
UNK . These conflicts can be resolved with the insertion of explicit
casts, as described above. Like CCured, this algorithm runs in linear
time proportional to the number of pointer variables in the program.

5.3 Evaluation

To evaluate the rewriter, we ran it on six programs and libraries
and recorded how many pointer types the rewriter converted. The
rewriter was executed on an Amazon AWS c3.4xlarge (a Xeon
E5-2680 v2 2.80GHz processor with 32GB of RAM) instance running
Ubuntu 16.04. We chose these programs as they represent legacy,
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Program # of * %/# _Ptr Arr. Unk. Time (s) LOC

zlib 1.2.8 897 42%/376 10%/94 48%/427 19 6220
sqlite 3.18.1 36269 23%/8161 3%/952 75%/27156 94 134788

libarchive 3.3.1 19461 31%/6023 2%/459 67%/12979 596 80182
lua 5.3.4 4291 25%/1060 2%/78 73%/3153 28 14585
libtiff 4.0.6 7609 24%/1791 4%/267 73%/5551 90 57091
vsftpd 3.0.3 2037 42%/861 2%/33 56%/1143 15 15048

Table 3: Number of pointer types converted. The # of * column represents the number of pointer types in the program. The

Arr and Unk columns represent constraints where the rewriter determined that the access into the pointer was via indexing

(Arr) or that the constraints can’t be captured by the rewriter (Unk) due to casts, assignment to a non-zero literal, or some

other operation.

low level libraries that are used in commodity systems and fre-
quently in security-sensitive contexts. Table 3 contains the results.
The value in the _Ptr<T> column indicates the number of _Ptr<T>
added to the program that replace standard C pointers. These are
re-written at the location they are declared. After investigation,
there are usually two reasons that a pointer cannot be replaced
with a _Ptr<T>: either some arithmetic is performed on the pointer,
or it is passed as a parameter to a library function for which a
bounds-safe interface does not exist.

6 RELATEDWORK

There has been extensive research addressing out-of-bounds mem-
ory accesses in C [49]. The research falls into 4 categories: lan-
guages, implementations, static analysis, and security mitigations.

Safe languages. Cyclone [27] and Deputy [13, 57] are type-safe
dialects of C. Cyclone’s key novelty is its support for GC-free tem-
poral safety [22, 48]. Checked C differs from Cyclone by being
backward compatible (Cyclone disallowed many legacy idioms) and
avoiding pointer format changes (e.g., Cyclone used “fat” pointers
to support arithmetic). Deputy keeps pointer layout unchanged by
allowing a programmer to describe the bounds using other program
expressions. Checked C builds on this, but make bounds checking
a first-class part of the language. Deputy incorporates the bounds
information into the types of pointers by using dependent types.
This makes type checking hard to understand . Deputy requires
that values of all pointers stay in bounds so that they match their
types. To enforce this invariant (and make type checking decidable),
it inserts runtime checks before pointer arithmetic. Checked C uses
separate annotations that describe bounds invariants instead of
incorporating bounds into pointer types and inserts runtime checks
only at memory accesses.

Like Cyclone, programming languages like D [17] and Rust [43]
aim to support safe, low-level systems-oriented programming with-
out requiring GC. Go [21] and C# [33] target a similar domain.
Legacy programs would need to be ported wholesale to take advan-
tage of these languages, which could be a costly affair.

Safe C implementations. Rather than use a new language, several
projects have looked at new ways to implement legacy C programs
so as to make them spatially safe. The bcc source-to-source transla-
tor [29] and the rtcc compiler [47] changed the representations of
pointers to include bounds. The rtcc-generated code was 3 times

larger and about 10 times slower. Fail-Safe C [38] changed the rep-
resentation of pointers and integers to be pairs. Benchmarks were 2
to 4 times slower. CCured [35] employed a whole-program analysis
for transforming programs to be safe. Its transformation involved
changes to data layout (e.g., fat and “wild” pointers), which could
cause interoperation headaches. Compilation was all-or-nothing:
unhandled code idioms in one compilation unit could inhibit com-
pilation of the entire program. Our rewriting algorithm is inspired
by CCured’s analysis with the important differences that (a) not
every pointer need be made safe, and (b) the output is not a step in
compilation, but programmer-maintainable source code.

Safety can also be offered by the loader and run-time system.
“Red zones”, used by Purify [25, 51] are inserted before and after
dynamically-allocated object and between statically-allocated ob-
jects, where bytes in the red zone are marked as inaccessible (at
a cost of 2 bits per protected byte). Red-zone approaches cannot
detect out-of-bounds accesses that occur entirely within valid mem-
ory for other objects or stack frames or intra-object buffer overruns
(a write to an array in a struct that overwrites another member of
the struct). Checked C detects accesses to unrelated objects and
intra-object overruns.

Similar tools include Bounds Checker [32], Dr. Memory [9, 18],
Intel Inspector [14], Oracle Solaris Studio Code Analyzer [39],
Valgrind Memcheck [36, 52], Insure++ [40], and AddressSanitizer
(ASAN) [45]. ASAN is incorporated into the LLVM and GCC com-
pilers. It tracks the state of 8-byte chunks in memory. It increases
SPEC CPU program execution time by 73% when checking reads
and writes and 26% when only checking writes. SPEC CPU2006
average memory usage is 3.37 times larger. Light-weight Bounds
Checking [24] uses a two-level table to reduce memory overhead.

Checking that accesses are to the proper objects can be done
using richer side data structures that track object bounds and by
checking that pointer arithmetic stays in bounds [3, 19, 28, 34, 41,
44, 56]. Baggy Bounds Checking [3] provides a fast implementation
of object bounds by reserving 1/n of the virtual address space for
a table, where n is the smallest allowed object size and requiring
object sizes be powers of 2. It increases SPECINT 2000 execution
time by 60% and memory usage by 20%. SoftBound [34] tracks
bounds information by using a hash table or a shadow copy of
memory. It increases execution time for a set of benchmarks by 67%
and average memory footprint by 64%. SoftBound can check only
writes, in which case execution time increases by 22%.
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There is also work on adding temporal safety with different
memory allocation implementations, e.g., via conservative garbage
collection [8] or regions [22, 48]. Checked C focuses on spatial
safety both due to its importance at stopping code injection style
attacks as well as information disclosure attacks, though temporal
safety is important and we plan to investigate it in the future.

Static analysis. Static analysis tools take source or binary code
and attempt to find possible bugs, such as out-of-bounds array
accesses, by analyzing the code. Commercial tools include CodeS-
onar, Coverity Static Analysis, HP Fortify, IBM Security AppScan,
Klocwork, Microsoft Visual Studio Code Analysis for C/C++, and
Polyspace Static Analysis [6, 10, 20]. Static analysis tools have dif-
ficulty balancing precision and performance. To be precise, they
may not scale to large programs. While imprecision can aid scala-
bility, it can result in false positives, i.e., error reports that do not
correspond to real bugs. False positives are a significant problem
[6]. As a result, tools may make unsound assumptions (e.g., inspect-
ing only a limited number of paths through function [10]) but the
result is they may also miss genuine bugs (false negatives). Alter-
natively, they may focus on supporting coding styles that avoid
problematic code constructs, e.g., pointer arithmetic and dynamic
memory allocation [2, 7, 16, 30]. Or, they may require sophisticated
side conditions on specifications, i.e., as pre- and post-conditions at
function boundaries, so that the analysis can be modular, and thus
more scalable [23].

Checked C occupies a different design point than static analysis
tools. It avoids problems with false positives by deferring bounds
checks to runtime—in essence, it trades run-time overhead for
soundness and coding flexibility. In addition, Checked C avoids
complicated specifications on functions. For example, a modular
static analysis might have required the code in Figure 2 to include
that src_count ≤ dst_count as a function pre-condition. While this
constraint is not particularly onerous, some specifications can be.
In Checked C, such side conditions are unnecessary; instead, sound-
ness ensured by occasional dynamic checks.

Security mitigations. Security mitigations employ runtime-only
mechanisms that detect whether memory has been corrupted or
prevent an attacker from taking control of a system after such
corruption. They include data execution prevention (DEP), soft-
ware fault isolation (SFI) [54] , address-space layout randomization
(ASLR) [50, 55], stack canaries [15], shadow stacks [5, 12], and
control-flow integrity (CFI) [1]. DEP, ASLR, and CFI focus on pre-
venting execution of arbitrary code and control-flow modification.
Stack protection mechanisms focus on protecting data or return
addresses on the stack.

Checked C provides protection against data modification and
data disclosure attacks, which the other approaches do not. For
example, ASLR does not protect against data modification or data
disclosure attacks. Data may be located on the stack adjacent to a
variable that is subject to a buffer overrun; the buffer overrun can be
be used reliably to overwrite or read the data. Shadow stacks do not
protect stack-allocated buffers or arrays, heap data, and statically-
allocated data. Chen et al. [11] show that data modification attacks
that do not alter control-flow pose a serious long-term threat. The
Heartbleed attack illustrates the damage possible.

7 SUMMARY

In this paper, we presented the Checked C extension to C. Checked
C’s design is focused on interoperability with legacy C, usability,
and high performance. To assist in incrementally strengthening
legacy code, we have provided an automated porting tool for rewrit-
ing code to use checked pointers. Checked C’s checked regions help
ensure the non-culpability of ported code in any safety violation.
Our implementation of Checked C as an LLVM extension enjoys
good performance, with relatively low run-time overheads.

Checked C is an ongoing project, with code freely available on
the Internet. We are working to improve our support for pointer
arithmetic, to add support for zero-terminated pointers, and to
extend the capabilities of the rewriting tool. In the longer term we
plan to support temporal safety checking as well.
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